
O
p

en
St

ac
k

B
eg

in
n

er
's

 G
u

id
e

fo
r

U
b

u
n

tu
 -

N
at

ty

OpenStack Beginner’s Guide
(for Ubuntu - Natty)

v1.0, 3 Aug 2011

Atul Jha
Johnson D

Kiran Murari
Murthy Raju
Suseendran RB

Yogesh Girikumar

http://www.csscorp.com/

OpenStack Beginner’s Guide
(for Ubuntu - Natty)

v1.0, 3 Aug 2011

’Ubuntu’, the Ubuntu Logo and ’Canonical’ are registered trademarks of Canonical. Read
Canonical’s trademark policy here.

CSS, CSS Corp., and the CSS Corp logos are registered trademarks of CSS Corp. Pvt. Ltd

All other trademarks mentioned in the book belong to their respective owners.

This book is aimed at making it easy/simple for a beginner to build and maintain a private
cloud using OpenStack. This book will be updated periodically based on the suggestions, ideas,
corrections, etc., from readers.

Mail Feedback to: css.ossbooks@csscorp.com

Please report bugs in the content of this book at :
https://bugs.launchpad.net/openstackbook/+filebug and we will try to fix them as early as
possible and incorporate them in to the next version of the book.

Released under Creative Commons - Attribution-NonCommercial-ShareAlike 3.0 Unported
license.

A brief description of the license

A more detailed license text

CC $

BY NC SA

http://www.canonical.com/
http://www.ubuntu.com/aboutus/trademarkpolicy
http://www.csscorp.com/
mailto:css.ossbooks@csscorp.com
https://bugs.launchpad.net/openstackbook/+filebug
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode
http://creativecommons.org/licenses/by-nc-sa/3.0/

Preface

Introduction

We released our ”Eucalyptus Beginner’s Guide - UEC Edition” as articles and as a downloadable
pdf on our blog at http://cssoss.wordpress.com/ in May 2010 and had a very good response from
users of Eucalyptus. Encouraged by the response, we started working with OpenStack in early
2011 and released a set of articles about OpenStack for beginners on our blog. Here is the pdf
version.

Target Audience

Our aim has been to provide a guide for a beginner to OpenStack. Good familiarity with vir-
tualization is assumed, as troubleshooting many OpenStack-related problems requires a good
knowledge of virtualization. Similarly, familiarity with Cloud Computing concepts and termi-
nology will be of help. Prior exposure to AWS API and/or tools is not mandatory, though such
exposure will accelerate the learning process greatly.

Acknowledgement

Most of the content has been borrowed from web resources like manuals, documentation, white
papers etc. from OpenStack and Canonical; numerous posts on OpenStack and Ubuntu forums;
discussions on OpenStack IRC Channel and many articles on the web including those of our
colleagues at CSS Corp. We would like to thank all the authors of these resources.

License

Attribution-Noncommercial-Share Alike 3.0 Unported. For the full version of the license text,
please refer to http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode and http:

//creativecommons.org/licenses/by-nc-sa/3.0 for a shorter description.

Feedback

We would really appreciate your feedback. We will enhance the book on an ongoing basis based
on your feedback. Please mail your feedback to css.ossbooks@csscorp.com.

http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode
http://creativecommons.org/licenses/by-nc-sa/3.0
http://creativecommons.org/licenses/by-nc-sa/3.0
mailto:css.ossbooks@csscorp.com

OpenStack Beginner’s guide 1

Contents

1 Introduction to OpenStack and its components 7

1.1 Cloud Computing . 7

1.2 OpenStack . 7

1.2.1 Open Stack Compute Infrastructure (Nova) . 8

1.2.1.1 Functions and Features: . 8

1.2.1.2 Components of OpenStack . 8

1.2.1.2.1 API Server (nova-api) . 9

1.2.1.2.2 Message Queue (Rabbit MQ Server) . 9

1.2.1.2.3 Compute Worker (nova-compute) . 9

1.2.1.2.4 Network Controller (nova-network) . 9

1.2.1.2.5 Volume Workers (nova-volume) . 10

1.2.1.2.6 Scheduler (nova-scheduler) . 10

1.2.2 OpenStack Storage Infrastructure (Swift) . 10

1.2.2.1 Functions and Features . 10

1.2.3 OpenStack Imaging Service (Glance) . 10

1.2.3.1 Functions and Featues (Glance) . 11

1.2.3.2 Components of OpenStack Imaging Service (Glance) . 11

2 Installation and configuration 13

2.1 Introduction . 13

2.2 Server1 . 14

2.2.1 Base OS . 14

2.2.2 Network Configuration . 14

2.2.3 NTP Server . 15

2.2.4 Glance . 15

2.2.5 MySQL Server . 15

2.2.5.1 Configuration . 16

2.2.6 Nova Components . 16

2.2.7 Nova dashboard . 18

2.2.7.1 Setting Up E-mail service for the web interface . 19

2.2.7.2 OpenStack Dashboard with MySQL Database . 20

2.2.7.3 Running Dashboard on apache2 with mod_wsgi . 20

2.2.7.4 Setting up the virtual host and WSGI alias in Apache . 21

2.3 Server 2 . 21

2.3.1 BaseOS . 21

2.3.2 Networking Configuration . 21

2.3.3 NTP Client . 22

2.3.4 Nova Components (nova-compute alone) . 22

2.4 Client1 . 23

2.4.1 BaseOS . 23

2.4.2 Networking Configuration . 23

2.4.3 NTP Client . 23

2.4.4 Client Tools . 24

3 Image Management 25

3.1 Introduction . 25

3.2 Creating a Linux Image - Ubuntu & Fedora . 25

3.2.1 OS Installation . 26

3.2.2 Extracting the EXT4 partition . 27

3.2.3 Tweaking /etc/fstab . 28

3.2.4 Fetching Metadata in Fedora . 28

3.2.5 Kernel and Initrd for OpenStack . 28

3.2.6 Registering with OpenStack . 29

3.2.7 Image Listing . 29

3.3 Creating a Windows Image . 29

4 Instance Management 31

4.1 Introduction . 31

4.2 Hybridfox . 32

4.2.1 Features . 32

4.2.2 Installation . 32

4.2.3 Configuration . 32

4.3 Euca2ools-Command Line Tools . 33

4.3.1 Installation . 33

4.3.2 Creation of Key Pairs . 33

4.3.3 Launch and manage instances . 34

4.4 OpenStack Dashboard . 35

4.4.1 Creation of Keypairs . 35

4.4.2 Launching an instance . 35

4.4.3 Terminating an instance . 36

4.4.4 Displaying the Console output . 36

OpenStack Beginner’s guide 3

5 Storage Management 37

5.1 nova-volume . 37

5.1.1 Interacting with Storage Controller . 37

6 Network Management 39

6.1 Introduction . 39

7 Role Based Access Control 41

7.1 Role Based Access Control . 41

7.1.1 Administrator(admin) . 41

7.1.2 IT security (itsec) . 41

7.1.3 Project Manager (projectmanager) . 41

7.1.4 Network Administrator (netadmin) . 42

7.1.5 Developer (developer) . 42

7.1.6 Tabular representation of Roles . 42

8 Security 43

8.1 Security . 43

9 OpenStack Commands 45

9.1 Nova Manage Commands . 45

9.1.1 User/Role Management . 45

9.1.2 Project Management . 46

9.1.3 Database Management . 47

9.1.4 Instance Type Management . 47

9.1.5 Service Management . 47

9.1.6 Euca2ools Commands . 48

OpenStack Beginner’s guide 5

List of Tables

2.1 Network Configuration . 14

7.1 Role representation . 42

OpenStack Beginner’s guide 7

Chapter 1

Introduction to OpenStack and its components

1.1 Cloud Computing

Cloud computing is a computing model, where resources such as computing power, storage, network and software are abstracted
and provided as services on the Internet in a remotely accessible fashion. Billing models for these services are generally similar
to the ones adopted for public utilities. On-demand availability, ease of provisioning, dynamic and virtually infinite scalability
are some of the key attributes of cloud computing.

An infrastructure setup based on the cloud computing model is generally referred to as the "cloud". The following are the broad
categories of services available on the cloud:

• Infrastructure as a Service (IaaS)

• Platform as a Service (PaaS)

• Software as a Service (SaaS)

Amazon Web Services (AWS) is one of the major players providing IAAS. They have two popular services - Elastic Compute
Cloud (EC2) and Simple Storage Service (S3). These services are available through web services.

1.2 OpenStack

OpenStack is a stack of open source software that enterprises/service providers can use to setup and run their cloud compute and
storage infrastructure. RackSpace and NASA are the key initial contributors to the stack. Rackspace contributed their "Cloud
Files" platform to power the Object Storage part of the OpenStack, while NASA contributed their "Nebula" code to power the
Compute part. OpenStack consortium has managed to have more than 50 members including IBM, Canonical, Dell, Citrix etc.
in less than a year.

OpenStack makes its services available through Amazon EC2/S3 compatible APIs and hence the client tools written for AWS
can be used with OpenStack as well.

There are 3 main service families under OpenStack

• Compute Infrastructure (Nova)

• Storage Infrastructure (Swift)

• Imaging Service (Glance)

1.2.1 Open Stack Compute Infrastructure (Nova)

Nova is the underlying cloud computing fabric controller for the OpenStack cloud. All activities needed to support the life cycle of
instances within the OpenStack cloud are handled by Nova. It manages all the compute resources, networking, authorization, and
scalability needs of the OpenStack cloud. Nova is a management platform and does not provide any virtualization capabilities by
itself; instead, it uses libvirt APIs to interact with the supported hypervisors. Nova exposes its capabilities through a web services
API that is compatible with that of EC2 of Amazon Web Services.

1.2.1.1 Functions and Features:

• Instance life cycle management

• Management of compute resources

• Networking and Authorization

• REST-based API

• Asynchronous eventually consistent communication

• Hypervisor agnostic : support for Xen ,XenServer, KVM, UML and Hyper-V

1.2.1.2 Components of OpenStack

Nova Cloud Fabric is composed of the following major components:

• API Server (nova-api)

• Message Queue (rabbit-mq server)

• Compute Workers (nova-compute)

• Network Controller (nova-network)

• Volume Worker (nova-volume)

• Scheduler (nova-scheduler)

OpenStack Beginner’s guide 9

1.2.1.2.1 API Server (nova-api)

API Server provides an interface to the outside world to interact with the cloud infrastructure. API server is the only component
that outside world uses to manage the infrastructure. The management is done through web services calls using EC2 API. API
Server in turns communicates with the relevant components of the cloud infrastructure through the Message Queue.

1.2.1.2.2 Message Queue (Rabbit MQ Server)

OpenStack Cloud Controller communicates with other nova components such as Scheduler, Network Controller, and Volume
Controller via AMQP(Advanced Message Queue Protocol). Nova uses asynchronous calls for request response, with a call-back
that gets triggered once a response is received. Since asynchronous communication is used, none of the end points get stuck for
long in a waiting state. This is especially true since many actions expected by the API calls such as launching an instance or
uploading an image are time consuming.

1.2.1.2.3 Compute Worker (nova-compute)

Compute workers deal with instance management life cycle. they receive the requests for life cycle management via the Message
Queue and carry out operations. There are several Compute Workers in a typical production cloud deployment. An instance is
deployed on any of the available compute worker based on the scheduling algorithm used.

1.2.1.2.4 Network Controller (nova-network)

The Network Controller deals with the network configuration of host machines. It does operations like allocating IP addresses,
configuring VLANs for projects, implementing security groups and configuring networks for compute nodes.

1.2.1.2.5 Volume Workers (nova-volume)

Volume workers are used for the management of LVM-based instance volumes. Volume Workers perform volume related func-
tions such as creation, deletion, attaching a volume to an instance, and detaching a volume from an instance. Volumes provide
a way of providing persistent storage for use by instances, as the main disk attached to an instance is non-persistent and any
changes made to it are lost when the volume is detached or the instance is terminated. When a volume is detached from an
instance or when an instance, to which the volume is attached, is terminated, it retains the data that was stored on it when it was
attached to an instance earlier. This data can be accessed by reattaching the volume to the same instance or by attaching it to
another instances.

Any valuable data that gets accumulated during the life cycle of an instance should be written to a volume, so that it can be
accessed later. This typically applies to the storage needs of database servers, etc.

1.2.1.2.6 Scheduler (nova-scheduler)

The scheduler maps the nova-API calls to the appropriate openstack components. It runs as a daemon named nova-schedule
and picks up a compute/network/volume server from a pool of available resources depending upon the scheduling algorithm in
place. A scheduler can base its decisions on various factors such as load, memory, physical distance of the availability zone, CPU
architecture, etc. The nova scheduler implements a pluggable architecture.

Currently the nova-schedule implements a few basic scheduling algorithms:

• chance: In this method, a compute host is chosen randomly across availability zones.

• availability zone: Similar to chance, but the compute host is chosen randomly from within a specified availability zone.

• simple: In this method, hosts whose load is least are chosen to run the instance.

1.2.2 OpenStack Storage Infrastructure (Swift)

Swift is an object store to store a large number of objects distributed across commodity hardware. Swift has built-in redundancy
and failover management and features like backing up or archiving data, serving graphics or videos. It is scalable to multiple
petabytes and to billions of objects. Swift provides elasticity and flexibility of cloud based storage for your web applications.

1.2.2.1 Functions and Features

• Storing the machine images

• Working as an independent data container

• Redundancy and Failover

• Backup and Archival

• Extremely scalable

1.2.3 OpenStack Imaging Service (Glance)

OpenStack Imaging Service is a lookup and retrieval system for virtual machine images. It can be configured to use any one of
the following 3 storage backends:

• OpenStack Object Store to store images

• S3 storage directly

• S3 storage with Object Store as the intermediate for S3 access.

OpenStack Beginner’s guide 11

1.2.3.1 Functions and Featues (Glance)

• Provides imaging service

1.2.3.2 Components of OpenStack Imaging Service (Glance)

• Glance-api

• Glance-registry

OpenStack Beginner’s guide 13

Chapter 2

Installation and configuration

2.1 Introduction

The following section describes how to set up a minimal cloud infrastructure based on OpenStack using 3 machines. These
machines are referred to in this and subsequent chapters as Server1 and Server2 and Client1. Server1 runs all the 7 components
of Nova as well as Glance and OpenStack dashboard. Server2 runs only nova-compute. Since OpenStack components follow a
shared-nothing policy, each component or any group of components can be installed on any server.

Client1 is not a required component. In our sample setup, it is used for bundling images and for using as a client for web interface
and to run euca commands for managing the infrastructure. Having this client ensures that you do not need to meddle with the
servers for tasks such as bundling. Also, bundling of Desktop Systems including Windows will require GUI and it is better to
have a dedicated machine for this purpose. We would recommend this machine to be VT-Enabled so that KVM can be run and
Windows VMs can be run during image creation for bundling.

The installation steps use certain specifics such as hostnames/IP addresses etc. Modify them to suit your environment before
using them. The following table summarizes these specifics.

Server 1 Server 2 Client 1

Functionality
All components of Open
Stack including
nova-compute

nova-compute Client

No of NICs eth0-Public N/W,eth1
-Private N/W

eth0-Public N/W,eth1
-Private N/W eth0-Public N/W

IP addresses eth0-10.10.10.2,eth1-
192.168.3.1

eth0-10.10.10.3,eth1-
192.168.3.2 eth0-10.10.10.4

Hostname server1.example.com server2.example.com client.example.com
DNS servers 10.10.10.3 10.10.10.3 10.10.10.3
Gateway IP 10.10.10.1 10.10.10.1 10.10.10.1

Table 2.1: Network Configuration

2.2 Server1

2.2.1 Base OS

Boot the server off the Ubuntu server 11.04 CD. At the graphical menu select Install Ubuntu Server and proceed with basic
installation steps.

We will also be running nova-volume on this server and it is ideal to have a dedicated partition for the use of nova-volume. So,
ensure that you choose manual partitioning scheme while installing Ubuntu Server and create a dedicated partition with adequate
amount of space for this purpose. We have referred to this partition in the rest of the chapter as /dev/sda6. You can substitute the
correct device name of this dedicated partition based on your local setup while following the instructions. Also ensure that the
partition type is set as Linux LVM (8e) using fdisk either during install or immediately after installation is over.

• Create the first user with the name ’localadmin’ .

• Installation lets you setup the IP address for the first interface i.e. eth0. Set the IP address details.

• During installation select only openssh-server in the packages menu.

Nova and Glance have been included in Universe repository . Enable Universe repository in your /etc/apt/sources.list.

Update the machine using the following commands.

sudo apt-get update

sudo apt-get upgrade

Install bridge-utils:

sudo apt-get install bridge-utils

Reboot the server and login as the admin user(localadmin) created during the OS installation.

2.2.2 Network Configuration

Edit the /etc/network/interfaces file so as to looks like this:

auto lo
iface lo inet loopback
auto eth0
iface eth0 inet static
address 10.10.10.2
netmask 255.255.255.0

OpenStack Beginner’s guide 15

broadcast 10.10.10.255
gateway 10.10.10.1
dns-nameservers 10.10.10.100

auto br100
iface br100 inet static
bridge_ports eth1
bridge_stp off
bridge_maxwait 0
bridge_fd 0
address 192.168.3.1
netmask 255.255.0.0
broadcast 192.168.255.255

Restart the network now

sudo /etc/init.d/networking restart

2.2.3 NTP Server

Install NTP package. This server is going to act as an NTP server for the nodes. The time on all components of OpenStack will
have to be in sync. We can run NTP server on this and have other components sync to it.

sudo apt-get install ntp

Open the file /etc/ntp.conf and add the following 2 lines to make sure that the server serves time even when its connectivity to
the Internet is down. The following settings ensure that the NTP server uses its own clock as the clock source:

server 127.127.1.0
fudge 127.127.1.0 stratum 10

Restart NTP service to make the changes effective

sudo /etc/init.d/ntp restart

2.2.4 Glance

Glance is an image server that Nova can use to pickup images from. Glance is very modular and can use several types of storage
backends such as filestore, s3 etc. We install Glance before installing Nova, so that when we get to configuring Nova, glance is
ready to be used by Nova.

sudo apt-get install glance

The default config file at /etc/glance/glance.conf is good to use for a simple file store as the storage backend. Glance can be
configured to use other storage backends such as Swift.

Glance uses sqlite as the default database backend. While sqlite offers a quick and easy way to get started, for production use,
you may consider a database such as MySQL or PostgreSQL.

Glance has two components - glance-api and glance-registry. These can be controlled using the corresponding upstart jobs.

2.2.5 MySQL Server

Install mysql-server package

sudo apt-get install -y mysql-server

2.2.5.1 Configuration

Set a variable called "MYSQL_PASS" for use in the various commands below:

MYSQL_PASS="mygreatsecret"

Change the bind address from 127.0.0.1 to 0.0.0.0 in /etc/mysql/my.cnf and it should look like this:

bind-address = 0.0.0.0

Restart MySQL server to ensure that it starts listening on all interfaces.

sudo restart mysql

If you did not set the MySQL root password during installation, set it now.

mysqladmin -u root password $MYSQL_PASS

Create a database named nova.

sudo mysql -uroot -p$MYSQL_PASS -e ’CREATE DATABASE nova;’

Update the database to grant super-user privileges for root user to login from any IP.

sudo mysql -uroot -p$MYSQL_PASS -e "GRANT ALL PRIVILEGES ON *.* TO ’root’@’%’ WITH GRANT ←↩
OPTION;"

Set MySQL root password for login from any IP.

sudo mysql -uroot -p$MYSQL_PASS -e "SET PASSWORD FOR ’root’@’%’ = PASSWORD(’$MYSQL_PASS’);"

2.2.6 Nova Components

Install the messaging queue server, RabbitMQ and various nova components.

sudo apt-get install -y rabbitmq-server nova-common nova-doc python-nova nova-api nova- ←↩
network nova-volume nova-objectstore nova-scheduler nova-compute

Install euca2ools package for command line tools to interact with nova.

sudo apt-get install -y euca2ools

Install unzip for extracting archives.

sudo apt-get install -y unzip

Edit the /etc/nova/nova.conf file to look like this.

--dhcpbridge_flagfile=/etc/nova/nova.conf
--dhcpbridge=/usr/bin/nova-dhcpbridge
--logdir=/var/log/nova
--lock_path=/var/lock/nova
--state_path=/var/lib/nova
--verbose
--s3_host=10.10.10.2
--rabbit_host=192.168.3.1
--cc_host=192.168.3.1
--ec2_url=http://10.10.10.2:8773/services/Cloud
--fixed_range=192.168.0.0/16
--network_size=8

OpenStack Beginner’s guide 17

--FAKE_subdomain=ec2
--routing_source_ip=192.168.3.1
--sql_connection=mysql://root:mygreatsecret@10.10.10.2/nova
--glance_host=192.168.3.1
--image_service=nova.image.glance.GlanceImageService
--iscsi_ip_prefix=192.168.

Enable iscsitarget.

sudo sed -i ’s/false/true/g’ /etc/default/iscsitarget

Restart the iscsitarget service

sudo service iscsitarget restart

Create a Physical Volume.

sudo pvcreate /dev/sda6

Create a Volume Group named nova-volumes.

sudo vgcreate nova-volumes /dev/sda6

Create a group called "nova".

sudo groupadd nova

Change the ownership of the /etc/nova folder and permissions for /etc/nova/nova.conf:

sudo chown -R root:nova /etc/nova
sudo chmod 644 /etc/nova/nova.conf

Restart all the nova related services.

sudo /etc/init.d/libvirt-bin restart; sudo restart nova-network; sudo restart nova-compute; ←↩
sudo restart nova-api; sudo restart nova-objectstore; sudo restart nova-scheduler; sudo ←↩
restart nova-volume; sudo restart glance-api; sudo restart glance-registry

Create nova schema in the MySQL Database.

sudo nova-manage db sync

Create a list of IPs to be used from the network of fixed Ips set inside nova.conf.

sudo nova-manage network create 192.168.3.0/24 1 255

Allocate 32 pubic IP addresses for use by the instances starting from 10.10.10.225.

sudo nova-manage floating create 10.10.10.2 10.10.10.224/27

Create a user with admin rights on nova.

sudo nova-manage user admin novaadmin

Create a project named proj.

sudo nova-manage project create proj novaadmin

Create a directory to download nova credentials and download the zip file.

mkdir /home/localadmin/creds

Generate and save credentials for accessing/managing the nova cloud.

sudo nova-manage project zipfile proj novaadmin /home/localadmin/creds/novacreds.zip

Contents of novacreds.zip are required to use euca2ools to manage the cloud infrastructure and you will need to transfer this zip
file to any machine from where you want to run the commands from euca2ools. We will be using these credentials from client1
as well.

Navigate to the folder created and extract the files and change their ownership.

cd /home/localadmin/creds
unzip novacreds.zip
sudo chown localadmin:localadmin /home/localadmin/creds/ -R

Here are the files extracted:

cacert.pem, cert.pem, novarc, pk.pem

novarc contains several environmental variables including your nova credentials to be set before you can use the commands from
euca2ools such euca-describe-images, euca-describe-instances etc. these variables can be set by sourcing novarc file.

source /home/localadmin/creds/novarc

Restart all the nova related services.

sudo /etc/init.d/libvirt-bin restart; sudo restart nova-network; sudo restart nova-compute; ←↩
sudo restart nova-api; sudo restart nova-objectstore; sudo restart nova-scheduler; sudo ←↩
restart nova-volume; sudo restart glance-api; sudo restart glance-registry

Check if the credentials are working and if nova has been setup properly by running:

euca-describe-availability-zones verbose

If you see something like the following with all components happy, it means that the set up is ready to be used.

AVAILABILITYZONE nova available
AVAILABILITYZONE |- server1
AVAILABILITYZONE | |- nova-compute enabled : -) 2011-04-03 07:48:50
AVAILABILITYZONE | |- nova-scheduler enabled : -) 2011-04-03 07:48:48
AVAILABILITYZONE | |- nova-network enabled : -) 2011-04-03 07:48:49
AVAILABILITYZONE | |- nova-volume enabled : -) 2011-04-03 07:48:49

2.2.7 Nova dashboard

OpenStack-dashboard is a web interface for managing users, user credentials, key pairs, images, instances etc.

Install bazaar version control system to fetch required software from the repository at launchpad.

sudo apt-get install -y bzr
sudo easy_install virtualenv

You have already finished setting up credentials for a user called localadmin in the Nova configuration section above. The
credentials of this user will need to embedded into the dashboard’s configuration file.

Checkout the source of OpenStack-dashboard from bzr and run run_tests.sh, which does not only test the installation, but also
installs several dependencies of the dashboard.

sudo bzr init-repo .
sudo bzr branch lp:openstack-dashboard -r 46 /opt/osdb
cd /opt/osdb
sudo sh run_tests.sh
cd openstack-dashboard

OpenStack Beginner’s guide 19

Note: It has been tested with reversion 46 of OpenStack Dashboard

Since you are trying to checkout from bzr anonymously, a message saying "You have not informed bzr of your Launchpad ID..."
is displayed. You can safely ignore that.

Edit /opt/osdb/openstack-dashboard/local/local_settings.py to include certain details required for connecting to nova-api.

NOVA_DEFAULT_ENDPOINT = ’http://localhost:8773/services/Cloud’
NOVA_DEFAULT_REGION = ’nova’
NOVA_ACCESS_KEY = ’b6a7e3ca-f894-473b-abca-84329d9829fa:proj’
NOVA_SECRET_KEY = ’2d61a361-965a-4ed6-966a-d9f543b42531’
NOVA_ADMIN_USER = ’novaadmin’
NOVA_PROJECT = ’proj’

A simple way of doing this will be to copy the relevant lines from novarc file that we discussed above.

2.2.7.1 Setting Up E-mail service for the web interface

In order to to have mails generated by OpenStack dashboard delivered, we need to configure dashboard with the details of an
smtp server by editing local_settings.py file.

EMAIL_HOST = ’server1.example.com’
EMAIL_PORT = 25

If the mail server provides only authenticated SMTP, add the following lines:

EMAIL_USER =
EMAIL_PASSWORD =

If the mail server requires a TLS connection, add the following lines:

EMAIL_USE_TLS = ’True’

Create a openstack-dashboard database and its schema with the syncdb command. Provide the name/email address/desired
password of the administrative user when prompted.

sudo tools/with_venv.sh dashboard/manage.py syncdb

While creating the schema, the above command asks you to create an admin account for the dashboard. Choose the user name as
the project admin’s user name you chose above while creating the project (novadmin in our case). You can choose any password
you like.

Launch the default python-django server. If you want the dashboard application to be available on port 8000 :

sudo tools/with_venv.sh dashboard/manage.py runserver 10.10.10.2:8000

To check the installation open a browser and enter the following URL

http://10.10.10.2:8000

You should be able to login as "novaadmin" using the password chosen above. Any other user trying to access the interface for
the first time, will need to sign up and will be able to use the interface after the account is approved by the administrator.

A successful login and display of the project named "proj" on the dashboard will indicate that the dashboard has been setup
successfully

2.2.7.2 OpenStack Dashboard with MySQL Database

Dashboard uses SQLite database by default. For production use, MySQL or PostgreSQL may be preferable. The procedure for
MySQL is given below. Procedure for PostgreSQL will be very similar.

Install python-dev and libmysqlclient-dev

sudo apt-get install libmysqlclient-dev
sudo apt-get install python-dev

Activate virtualenv and install mysql-python package inside the virtual environment of Dashboard.

cd /opt/osdb/openstack-dashboard
sudo bash
source .dashboard-venv/bin/activate
easy_install mysql-python

Create a MySQL database user with all privileges on OpenStack Dashboard database

mysql -uroot -pmygreatsecret

>create database dashboarddb;
>grant ALL on dashboarddb.* to nova@localhost identified by ’mygreatsecret’;

Update the DATABASES section of the Django’s local_settings.py file (/opt/osdb/openstack-dashboard/local/local_settings.py)
with the MySQL database settings. Here is the relevant extract from the updated file:

DATABASES = {
’default’: {

’ENGINE’: ’django.db.backends.mysql’,
’NAME’: ’dashboarddb’,
’USER’: ’nova’,
’PASSWORD’: ’mygreatsecret’,
’HOST’: ’localhost’,
’default-character-set’: ’utf8’,

}
}

Create the schema in the database

sudo tools/with_venv.sh dashboard/manage.py syncdb

2.2.7.3 Running Dashboard on apache2 with mod_wsgi

While the webserver that is included in Django is good for testing, for production use, it is recommended to use a web server like
Apache with mod_wsgi.

Install apache2 and wsgi module.

sudo apt-get install apache2 libapache2-mod-wsgi

Dashboard includes a file django.wsgi(/opt/osdb/openstack-dashboard/dashboard/wsgi/django.wsgi) to help in running dash-
board under Apache with WSGI. You can replace the default file with the file below.

Ref: http://jmoiron.net/blog/deploying-django-mod-wsgi-virtualenv/

import sys
import site
import os

OpenStack Beginner’s guide 21

#we are adding virtual enviornment path.
vepath = ’/opt/osdb/openstack-dashboard/.dashboard-venv/lib/python2.7/site-packages’
os.environ[’PYTHON_EGG_CACHE’] = ’/opt/osdb/openstack-dashboard/.dashboard-venv/lib/python2 ←↩

.7/site-packages’

prev_sys_path = list(sys.path)

add the site-packages of our virtualenv as a site dir
site.addsitedir(vepath)

reorder sys.path so new directories from the addsitedir show up first

new_sys_path = [p for p in sys.path if p not in prev_sys_path]

for item in new_sys_path:
sys.path.remove(item)

sys.path[:0] = new_sys_path

import from down here to pull in possible virtualenv django install

from django.core.handlers.wsgi import WSGIHandler
os.environ[’DJANGO_SETTINGS_MODULE’] = ’dashboard.settings’
application = WSGIHandler()

2.2.7.4 Setting up the virtual host and WSGI alias in Apache

Create /etc/apache2/sites-available/openstack with the following contents:

Listen 8000
<VirtualHost 10.10.10.2:8000>

ServerName 10.10.10.2
WSGIScriptAlias / /opt/osdb/openstack-dashboard/dashboard/wsgi/django.wsgi
Alias /media/admin/ /opt/osdb/openstack-dashboard/.dashboard-venv/lib/python2.7/site- ←↩

packages/django/contrib/admin/media/
</VirtualHost>

Enable virtual host.

sudo a2ensite openstack
sudo /etc/init.d/apache2 reload

Dashboard should now be available at http://10.10.10.2:8000

2.3 Server 2

2.3.1 BaseOS

Install 64-bit version of Natty Server

2.3.2 Networking Configuration

Install bridge-utils:

sudo apt-get install bridge-utils

Edit the /etc/network/interfaces file so as to looks like this:

auto lo
iface lo inet loopback
auto eth0
iface eth0 inet static
address 10.10.10.3
netmask 255.255.255.0
broadcast 10.10.10.255
gateway 10.10.10.1
dns-nameservers 10.10.10.100

auto br100
iface br100 inet static
bridge_ports eth1
bridge_stp off
bridge_maxwait 0
bridge_fd 0
address 192.168.3.2
netmask 255.255.0.0
broadcast 192.168.255.255

Restart the network now

sudo /etc/init.d/networking restart

2.3.3 NTP Client

Install NTP package.

sudo apt-get install ntp

Open the file /etc/ntp.conf and add the following line to sync to server1.

server 10.10.10.2

Restart NTP service to make the changes effective

sudo /etc/init.d/ntp restart

2.3.4 Nova Components (nova-compute alone)

Install the nova-components and dependencies.

sudo apt-get install -y nova-common python-nova nova-compute vlan

Install euca tools, for command line tools

sudo apt-get install -y euca2ools

Install unzip for extracting archives

sudo apt-get install -y unzip

Edit the /etc/nova/nova.conf file to look like this. This file is essentially similar to the configuration file (/etc/nova/nova.conf) of
Server1

OpenStack Beginner’s guide 23

--dhcpbridge_flagfile=/etc/nova/nova.conf
--dhcpbridge=/usr/bin/nova-dhcpbridge
--logdir=/var/log/nova
--lock_path=/var/lock/nova
--state_path=/var/lib/nova
--verbose
--s3_host=10.10.10.2
--rabbit_host=192.168.3.1
--cc_host=192.168.3.1
--ec2_url=http://10.10.10.2:8773/services/Cloud
--fixed_range=192.168.0.0/16
--network_size=8
--FAKE_subdomain=ec2
--routing_source_ip=192.168.3.2
--sql_connection=mysql://root:mygreatsecret@10.10.10.2/nova
--glance_host=192.168.3.1
--image_service=nova.image.glance.GlanceImageService

2.4 Client1

2.4.1 BaseOS

Install 64-bit version of Natty Desktop

2.4.2 Networking Configuration

Edit the /etc/network/interfaces file so as to looks like this:

auto lo
iface lo inet loopback

auto eth0
iface eth0 inet static
address 10.10.10.4
netmask 255.255.255.0
broadcast 10.10.10.255
gateway 10.10.10.1
dns-nameservers 10.10.10.100

2.4.3 NTP Client

Install NTP package.

sudo apt-get install ntp

Open the file /etc/ntp.conf and add the following line to sync to server1.

server 10.10.10.2

Restart NTP service to make the changes effective

sudo /etc/init.d/ntp restart

2.4.4 Client Tools

As mentioned above, this is a desktop installation of Natty to be used for tasks such as bundling of images. It will also be used
for managing the cloud infrastructure using euca2ools.

Install euca tools, for command line tools

sudo apt-get install -y euca2ools

Install qemu-kvm

sudo apt-get install qemu-kvm

Download the credentials we created for localadmin to this machine:

mkdir /home/localadmin/creds
cd /home/localadmin/creds
scp localadmin@10.10.10.2:/home/localadmin/creds/novacreds.zip .
unzip creds.zip

Source novarc file and see if connectivity to api server is working correctly:

source novarc
euca-describe-availability-zones verbose

The output should be similar to what is shown above in the configuration section for server1.

Note: If you want to avoid manually sourcing the novarc file everytime, the user can add the following line to the .profile file in
his home directory:

source /home/localadmin/creds/novarc

OpenStack Beginner’s guide 25

Chapter 3

Image Management

3.1 Introduction

There are several pre-built images for OpenStack available from various sources. You can download such images and use them
to get familiar with OpenStack. You can refer to http://docs.openstack.org/cactus/openstack-compute/admin/content/starting-
images.html for details on using such images.

For any production deployment, you may like to have the ability to bundle custom images, with a custom set of applications or
configuration. This chapter will guide you through the process of creating Linux images of Debian and Redhat based distributions
from scratch. We have also covered an approach to bundling Windows images.

There are some minor differences in the way you would bundle a Linux images, based on distributions. Ubuntu makes it
very easy by providing cloud-init package, which can be used to take care of the instance configuration at the time of launch.
cloud-init handles importing ssh keys for password-less login, setting hostname etc. The instance acquires the instance-specific
configuration from nova-compute by connecting to a meta data interface running on 169.254.169.254.

While creating the image of a distro that does not have cloud-init or an equivalent package, you may need to take care of importing
the keys etc. by running a set of commands at boot time from rc.local.

The process for creating an image of Ubuntu and Fedora is largely the same with a few minor differences, which is explained
below.

In both cases, the documentation below assumes that you have a working KVM installation to use for creating the images. We
are using the machine called ’client1’ as explained in the chapter on "Installation and Configuration" for this purpose.

The approach explained below will give you disk images that represent a disk without any partitions. nova-compute can resize
such disks (including resizing the file system) based on the instance type chosen at the time of launching the instance. These
images cannot have ’bootable’ flag and hence it is mandatory to have associated kernel and ramdisk images. These kernel and
ramdisk images need to be used by nova-compute at the time of launching the instance.

However, we have also added a small section towards the end of the chapter about creating bootable images with multiple
partitions that can be be used by nova to launch an instance without the need for kernel and ramdisk images. The caveat is that
while nova-compute can resize such disks at the time of launching the instance, the file system size is not altered and hence, for
all practical purposes, such disks are not re-sizable.

3.2 Creating a Linux Image - Ubuntu & Fedora

The first step would be to create a raw image on Client1. This will represent the main HDD of the virtual machine, so make sure
to give it as much space as you will need.

kvm-img create -f raw server.img 5G

3.2.1 OS Installation

Download the iso file of the Linux distribution you want installed in the image. The instructions below are tested on Ubuntu
11.04 Natty Narwhal 64-bit server and Fedora 14 64-bit. Most of the instructions refer to Ubuntu. The points of difference
between Ubuntu and Fedora are mentioned wherever required.

wget http://releases.ubuntu.com/natty/ubuntu-11.04-server-amd64.iso

Boot a KVM instance with the OS installer ISO in the virtual CD-ROM. This will start the installation process. The command
below also sets up a VNC display at port 0

sudo kvm -m 256 -cdrom ubuntu-11.04-server-amd64.iso -drive file=server.img,if=scsi,index=0 ←↩
-boot d -net nic -net user -nographic ~-vnc :0

Connect to the VM through VNC (use display number :0) and finish the installation.

For Example, where 10.10.10.4 is the IP address of client1:

vncviewer 10.10.10.4 :0

During the installation of Ubuntu, create a single ext4 partition mounted on ’/’. Do not create a swap partition.

In the case of Fedora 14, the installation will not progress unless you create a swap partition. Please go ahead and create a swap
partition.

After finishing the installation, relaunch the VM by executing the following command.

sudo kvm -m 256 -drive file=server.img,if=scsi,index=0,boot=on -boot c -net nic -net user - ←↩
nographic -vnc :0

At this point, you can add all the packages you want to have installed, update the installation, add users and make any configura-
tion changes you want in your image.

At the minimum, for Ubuntu you may run the following commands

sudo apt-get update

sudo apt-get upgrade

sudo apt-get install openssh-server cloud-init

For Fedora run the following commands as root

yum update

yum install openssh-server

chkconfig sshd on

Also remove the network persistence rules from /etc/udev/rules.d as their presence will result in the network interface in the
instance coming up as an interface other than eth0.

sudo rm -rf /etc/udev/rules.d/70-persistent-net.rules

Shutdown the virtual machine and proceed with the next steps.

OpenStack Beginner’s guide 27

3.2.2 Extracting the EXT4 partition

The image that needs to be uploaded to OpenStack needs to be an ext4 filesystem image. Here are the steps to create a ext4
filesystem image from the raw image i.e server.img

sudo losetup -f server.img

sudo losetup -a

You should see an output like this:

/dev/loop0: [0801]:16908388 ($filepath)

Observe the name of the loop device (/dev/loop0 in our setup) when $filepath is the path to the mounted .raw file.

Now we need to find out the starting sector of the partition. Run:

sudo fdisk -cul /dev/loop0

You should see an output like this:

Disk /dev/loop0: 5368 MB, 5368709120 bytes

149 heads, 8 sectors/track, 8796 cylinders, total 10485760 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x00072bd4
Device Boot Start End Blocks Id System
/dev/loop0p1 * 2048 10483711 5240832 83 Linux

Make a note of the starting sector of the /dev/loop0p1 partition i.e the partition whose ID is 83. This number should be multiplied
by 512 to obtain the correct value of the offset in bytes. In this case: 2048 x 512 = 1048576

Unmount the loop0 device:

sudo losetup -d /dev/loop0

Now mount only the partition(/dev/loop0p1) of server.img which we had previously noted down, by adding the -o parameter with
value previously calculated value

sudo losetup -f -o 1048576 server.img

sudo losetup -a

You’ll see a message like this:

/dev/loop0: [0801]:16908388 ($filepath) offset 1048576

Make a note of the mount point of our device(/dev/loop0 in our setup) when $filepath is the path to the mounted .raw file.

Copy the entire partition to a new .raw file

sudo dd if=/dev/loop0 of=serverfinal.img

Now we have our ext4 filesystem image i.e serverfinal.img

Unmount the loop0 device

sudo losetup -d /dev/loop0

3.2.3 Tweaking /etc/fstab

You will need to tweak /etc/fstab to make it suitable for a cloud instance. nova-compute may resize the disk at the time of launch
of instances based on the instance type chosen. This can make the UUID of the disk invalid. Hence we have to use file system
label as the identifier for the partition instead of the UUID.

Loop mount the serverfinal.img, by running

sudo mount -o loop serverfinal.img /mnt

UUID=e7f5af8d-5d96-45cc-a0fc-d0d1bde8f31c / ext4 errors=remount-ro 0 1

to

LABEL=uec-rootfs / ext4 defaults 0 0

3.2.4 Fetching Metadata in Fedora

Since Fedora does not ship with cloud-init or an equivalent, you will need to take a few steps to have the instance fetch the meta
data like ssh keys etc.

Edit the /etc/rc.local file and add the following lines before the line "touch /var/lock/subsys/local"

depmod -a
modprobe acpiphp
simple attempt to get the user ssh key using the meta-data service
mkdir -p /root/.ssh
echo >> /root/.ssh/authorized_keys
curl -m 10 -s http://169.254.169.254/latest/meta-data/public-keys/0/openssh-key| grep ’ssh- ←↩

rsa’ >> /root/.ssh/authorized_keys
echo "AUTHORIZED_KEYS:"
echo "************************"
cat /root/.ssh/authorized_keys
echo "************************"

3.2.5 Kernel and Initrd for OpenStack

Copy the kernel and the initrd image from /mnt/boot to user home directory. These will be used later for creating and uploading
a complete virtual image to OpenStack.

sudo cp /mnt/boot/vmlinuz-2.6.38-7-server /home/localadmin

sudo cp /mnt/boot/initrd.img-2.6.38-7-server /home/localadmin

Unmount the Loop partition

sudo umount /mnt

Change the filesystem label of serverfinal.img to ’uec-rootfs’

sudo tune2fs -L uec-rootfs serverfinal.img

Now, we have all the components of the image ready to be uploaded to OpenStack imaging server.

OpenStack Beginner’s guide 29

3.2.6 Registering with OpenStack

The last step would be to upload the images to OpenStack Imaging Server glance. The files that need to be uploaded for the
above sample setup of Ubuntu are: vmlinuz-2.6.38-7-server, initrd.img-2.6.38-7-server, serverfinal.img

Run the following command

uec-publish-image -t image --kernel-file vmlinuz-2.6.38-7-server --ramdisk-file initrd.img ←↩
-2.6.38-7-server amd64 serverfinal.img bucket1

For Fedora, the process will be similar. Make sure that you use the right kernel and initrd files extracted above.

uec-publish-image, like several other commands from euca2ools, returns the prompt back immediately. However, the upload
process takes some time and the images will be usable only after the process is complete. You can keep checking the status using
the command ’euca-describe-images’ as mentioned below.

You can register bootable disk images without associating kernel and ramdisk images. When you do not want the flexibility of
using the same disk image with different kernel/ramdisk images, you can go for bootable disk images. This greatly simplifies the
process of bundling and registering the images. However, the caveats mentioned in the introduction to this chapter apply. Please
note that the instructions below use server.img and you can skip all the cumbersome steps related to extracting the single ext4
partition.

euca-bundle-image -i server.img

euca-upload-bundle -b mybucket -m /tmp/server.img.manifest.xml

euca-register mybucket/server.img.manifest.xml

3.2.7 Image Listing

The status of the images that have been uploaded can be viewed by using euca-describe-images command. The output should
like this:

localadmin@client1:~$ euca-describe-images

IMAGE ari-7bfac859 bucket1/initrd.img-2.6.38-7-server.manifest.xml css available ←↩
private x86_64 ramdisk

IMAGE ~~ami-5e17eb9d bucket1/serverfinal.img.manifest.xml css available private ←↩
x86_64 ~machine aki-3d0aeb08 ari-7bfac859

IMAGE aki-3d0aeb08 bucket1/vmlinuz-2.6.38-7-server.manifest.xml css available ←↩
private x86_64 kernel

localadmin@client1:~$

3.3 Creating a Windows Image

The first step would be to create a raw image on Client1, this will represent the main HDD of the virtual machine, so make sure
to give it as much space as you will need.

kvm-img create -f raw windowsserver.img 20G

OpenStack presents the disk using aVIRTIO interface while launching the instance. Hence the OS needs to have drivers for
VIRTIO. By default, the Windows Server 2008 ISO does not have the drivers for VIRTIO. Download the virtual floppy drive
containing VIRTIO drivers from the following location

http://alt.fedoraproject.org/pub/alt/virtio-win/latest/images/bin/

and attach it during the installation

Start the installation by running

sudo kvm -m 1024 -cdrom win2k8_dvd.iso -drive file=windowsserver.img,if=virtio,boot=on -fda ←↩
virtio-win-1.1.16.vfd -boot d -nographic -vnc :0

When the installation prompts you to choose a hard disk device you won’t see any devices available. Click on "Load drivers" at
the bottom left and load the drivers from A:\i386\Win2008

After the Installation is over, boot into it once and install any additional applications you need to install and make any configu-
ration changes you need to make. Also ensure that RDP is enabled as that would be the only way you can connect to a running
instance of Windows. Windows firewall needs to be configured to allow incoming ICMP and RDP connections.

For OpenStack to allow incoming RDP Connections, use euca-authorize command to open up port 3389 as described in the
chapter on "Security".

Shut-down the VM and upload the image to OpenStack

euca-bundle-image -i windowsserver.img

euca-upload-bundle -b mybucket -m /tmp/windowsserver.img.manifest.xml

euca-register mybucket/windowsserver.img.manifest.xml

OpenStack Beginner’s guide 31

Chapter 4

Instance Management

4.1 Introduction

An instance is a virtual machine provisioned by OpenStack on one of the nova-compute servers. When you launch an instance,
a series of steps are triggered on various components of the OpenStack. During the life cycles of an instance, it moves through
various stages as shown in the diagram below:

There are four interfaces that can be used for managing instances in nova.

• Firefox with Hybridfox Plugin

• Command line tools like euca2ools

• OpenStack Dashboard

• Custom applications developed using EC2 APIs

4.2 Hybridfox

Elasticfox is an open source Mozilla Firefox extension that works on Firefox Version 2.0 or later to help you with managing AWS
compute and associated resources - Launch new instances, mount Elastic Block Storage volumes, map Elastic IP addresses, and
more. This was originally written for EC2, but, it has become possible to use to manage resources from other cloud platforms
that are API compatible with EC2 as well, particularly Eucalyptus.

Hybridfox is a fork from Elasticfox to make it usable with Eucalyptus, when Elasticfox worked only with AWS. The aim of
Hybridfox was to be usable as the single interface to AWS and Eucalyptus as well as other cloud platforms API compatible with
AWS. Recent versions of Hybridfox have been quick to add support for newer features from AWS such as handling streaming
media etc.

4.2.1 Features

• List available Machine images (AMI)

• List running instances

• Launch new instances of an AMI

• Manage security groups and rules

• Manage Snapshots/EBS volumes

4.2.2 Installation

You can install the extension from http://code.google.com/p/hybridfox/downloads/list. The latest version (at the time of writing)
is hybridfox-1.6.000040.xpi.

4.2.3 Configuration

Define a Region

• Click on Regions button

• Enter a logical name for the region (Example:"Eucalyptus" , "MyEucalyptus" etc.)

• Enter the value of EC2_URL from your eucarc file as the Endpoint URL(http://192.168.10.121:8773/services/Eucalyptus in
our sample setup)

Define Credentials

• Click on Credentials button

• Enter a logical name for the credential set (Example: "EucaAcc1" etc.)

• Enter EC2_ACCESS_KEY and EC2_SECRET_KEY from your eucarc file as the AWS Access Key and AWS Secret Access
Key respectively

Define Key Pairs

• Click on KeyPairs tab

• Click on "Create a ney keypair" icon

• Enter a name for the key pair (Example: "eucakey" etc.)

• Choose location on the client machine to save the id file to (You will need this to use with putty etc. to make an SSH connection)

OpenStack Beginner’s guide 33

Define Security Groups

• Click on SecurityGroups tab

• Enter a name for the group (Example: "Eucalyptus", "EucaGroup" etc.)

• Enter the description and click on create button

You will have an option to specify some basic ports like SSH/RDP to be opened up while creating the group itself. After the
group is created, you can add rules any time by choosing the security group in the left pane titled "Your groups" and adding rules
in the right pane titled "Group Permissions"

4.3 Euca2ools-Command Line Tools

Euca2ools from Eucalyptus provide a bunch of command line tools to manage the eucalyptus setup. These commands help you
manage images, instances, storage, networking etc. A few commands related to managing the instances are given below.

For a complete list of commands, see Appendix.

4.3.1 Installation

sudo apt-get install euca2ools

4.3.2 Creation of Key Pairs

OpenStack expects the client tools to use 2 kinds of credentials. One set of credentials are called Access Key and Secret Key that
all clients would need to use to make any requests to the Cloud Controller. Each user registered on the web interface has this set
created for him. You can download it from the web interface as mentioned in the chapter on "Web Interface".

You will also need to generate a keypair consisting of private key/public key to be able to launch instances on Eucalyptus. These
keys are injected into the instances to make passwordless SSH access to the instance possible. This depends on the way the
necessary tools are bundled into the images. Please refer to the chapter on Image Management for more details.

Keypairs can also be generated using the following commands.

cd ~/creds
euca-add-keypair mykey > mykey.priv
chmod 600 mykey.priv

This creates a new keypair called mykey. The private key mykey.priv is saved locally which can be used to connect to an instance
launched with mykey as the keypair. euca-describe-keypairs command to list the available keypairs.

The output should like this:

uecadmin@client1:~$ euca-describe-keypairs
KEYPAIR mykey f7:ac:8e:f5:05:19:2b:31:28:8c:9b:d7:b8:07:0c:3c:b6:34:8f:79
KEYPAIR helloworld 12:96:b3:21:34:8d:6a:3f:92:2e:2b:70:23:ff:7f:51:b5:b7:ad:37
KEYPAIR ubuntu f6:af:9a:59:65:35:32:c4:3a:c4:62:0e:e1:44:0f:71:29:03:2d:91
KEYPAIR lucid 74:04:70:33:ed:57:7a:30:36:1f:ca:c6:ec:d5:4f:10:34:1a:52:51
KEYPAIR karmic 01:f9:aa:5f:4d:20:e2:53:d1:29:d0:0f:e2:f3:8c:21:91:70:7e:c8

To delete an existing keypair:

euca-delete-keypair helloworld

The above tasks can be achieved using Hybridfox from the "Keypairs" tab.

4.3.3 Launch and manage instances

There are several commands that help in managing the instances. Here are a few examples:

$ euca-run-instances emi-721D0EBA -k mykey -t c1.medium
RESERVATION r-55560977 admin admin-default
INSTANCE i-50630A2A emi-721D0EBA 0.0.0.0 0.0.0.0 pending mykey 2010-05-07T07 ←↩

:17:48.23Z eki-675412F5 eri-A1E113E0

$ euca-describe-instances
RESERVATION r-55560977 admin default
INSTANCE i-50630A2A emi-721D0EBA 192.168.3.130 192.168.3.130 running ←↩

mykey 0 c1.medium 2010-05-07T07:17:48.23Z myueccluster eki ←↩
-675412F5 eri-A1E113E0

$ euca-reboot-instances i-50630A2A

$ euca-terminate-instances i-50630A2A

$ euca-run-instances ami-XXXXXXXX -k mykey

$ euca-get-console-output i-50630A2A
i-50630A2A
2010-05-07T07:22:40.795Z
[0.000000] Initializing cgroup subsys cpuset
[0.000000] Initializing cgroup subsys cpu
[0.000000] Linux version 2.6.32-21-server (buildd@yellow) (gcc version 4.
4.3 (Ubuntu 4.4.3-4ubuntu5)) #32-Ubuntu SMP Fri Apr 16 09:17:34 UTC 2010 (Ub
untu 2.6.32-21.32-server 2.6.32.11+drm33.2)
[0.000000] Command line: root=/dev/sda1 console=ttyS0
[0.000000] KERNEL supported cpus:
[0.000000] Intel GenuineIntel
[0.000000] AMD AuthenticAMD
[0.000000] Centaur CentaurHauls
[0.000000] BIOS-provided physical RAM map:
[0.000000] BIOS-e820: 0000000000000000 - 000000000009f000 (usable)
[0.000000] BIOS-e820: 000000000009f000 - 00000000000a0000 (reserved)
.............

You can make password less ssh access to the instance as follows:

ssh -i mykey.priv user@192.168.3.130

Make sure that you launch the instance with the correct VM type. If it is launched with a smaller VM type,then the following
error is encountered.

error: insufficient disk capacity remaining

By default, m1.small is the VM type that is used which comes with a 2GB Hard Disk. So if you have a disk image of size 5GB,
instead of

euca-run-instances ami-XXXXXXXX -k mykey

use

euca-run-instances ami-XXXXXXXX -k mykey -t c1.medium

VM type also has implications for amount of RAM and number of CPUs allocated to the instance.

Check the VM types available.

sudo nova-manage instance_type list

OpenStack Beginner’s guide 35

4.4 OpenStack Dashboard

4.4.1 Creation of Keypairs

4.4.2 Launching an instance

4.4.3 Terminating an instance

4.4.4 Displaying the Console output

OpenStack Beginner’s guide 37

Chapter 5

Storage Management

5.1 nova-volume

nova-volume provides persistent block storage compatible with Amazon’s Elastic Block Store. The storage on the instances is
non persistent in nature and hence any data that you generate and store on the file system on the first disk of the instance gets
lost when the instance is terminated. You will need to use persistent volumes provided by nova-volume if you want any data
generated during the life of the instance to persist after the instance is terminated.

Commands from euca2ools package can be used to manage these volumes.

Here are a few examples:

5.1.1 Interacting with Storage Controller

Make sure that you have sourced novarc before running any of the following commands. The following commands refer to a
zone called ’nova’, which we created in the chapter on "Installation and Configuration". The project is ’proj’ as referred to in the
other chapters.

Create a 10 GB volume

euca-create-volume -s 10 -z nova

You should see an output like:

VOLUME vol-00000002 1 creating (proj, None, None, None) 2011-04-21T07:19:52Z

List the volumes

euca-describe-volumes

You should see an output like this:

VOLUME vol-00000001 1 nova available (proj, server1, None, None) ←↩
2011-04-21T05:11:22Z

VOLUME vol-00000002 1 nova available (proj, server1, None, None) ←↩
2011-04-21T07:19:52Z

Attach a volume to a running instance

euca-attach-volume -i i-00000009 -d /dev/vdb vol-00000002

A volume can only be attached to one instance at a time. When euca-describe-volumes shows the status of a volume as ’available’,
it means it is not attached to any instance and ready to be used. If you run euca-describe-volumes, you can see that the status
changes from "available" to "in-use" if it is attached to an instance successfully.

When a volume is attached to an instance, it shows up as an additional SCSI disk on the instance. You can login to the instance
and mount the disk, format it and use it.

Detach a volume from an instance.

euca-detach-volume vol-00000002

The data on the volume persists even after the volume is detached from an instance. You can see the data on reattaching the
volume to another instance.

Even though you have indicated /dev/vdb as the device on the instance, the actual device name created by the OS running inside
the instance may differ. You can find the name of the device by looking at the device nodes in /dev or by watching the syslog
when the volume is being attached.

OpenStack Beginner’s guide 39

Chapter 6

Network Management

6.1 Introduction

In OpenStack, the networking is managed by a component called "nova-network". This interacts with nova-compute to ensure
that the instances have the right kind of networking setup for them to communicate among themselves as well as with the outside
world. Just as in Eucalyptus or AWS, each OpenStack instance can have 2 IP addresses attached to it. One is the private IP
address and the other called Public IP address. The private IP address is typically used for communication between instances and
the public IP is used for communication of instances with the outside world. The so called public IP address need not be a public
IP address routable on the Internet; it can even be an address on the corporate LAN.

The network configuration inside the instance is done with the private IP address in view. The association between the private IP
and the public IP and necessary routing is handled by nova-network and the instances need not be aware of it.

nova-network provides 3 different network management options. Currently you can only choose one of these 3 options for your
network management.

• Flat Network

• Flat DHCP Network

• VLAN Network

VLAN Network is the most feature rich and is the idea choice for a production deployment, while the other modes can be used
while getting familiar with OpenStack and when you do not have VLAN Enabled switches to connect different components of
the OpenStack infrastructure.

The network type is chosen by using one of the following configuration options in nova.conf file. If no network manager is
specified explicitly, the default network manager, VLANManager is used.

--network_manager = nova.network.manager.FlatManager
--network_manager = nova.network.manager.FlatDHCPManager
--network_manager = nova.network.manager.VlanManager

In each of these cases, run the following commands to set up private and public IP addresses for use by the instances:

sudo nova-manage network create 192.168.3.0/24 1 255
sudo nova-manage floating create 10.10.10.2 10.10.10.224/27

The public IP which you are going to associate with an instance needs to be allocated first by using "euca-allocate-address"
command:

euca-allocate-address 10.10.2.225

You can then associate a public IP to a running instance by using "euca-associate-address" command:

euca-associate-address -i i-0000008 10.10.2.225

Please refer to http://docs.openstack.org/openstack-compute/admin/content/ch04.html for more details about each of the net-
working types.

OpenStack Beginner’s guide 41

Chapter 7

Role Based Access Control

7.1 Role Based Access Control

Every nova user has a role associated with him. This role can be assigned at the time of creation of the account using "nova-
manage add user (name)" or by editing the profile later using the OpenStack Dashboard by the project manager.The role can
be either global or project specific in scope. All access in OpenStack is governed by roles. Each role has a predefined set of
operations permitted within the relevant scope(global or local)

7.1.1 Administrator(admin)

This is a project based role. Users who are created with admin roles at time of creation. They enjoy the rights as a administrator
for carrying out tasks such as

• adding an instance

• removing an instance

• removing an image

• adding a key

7.1.2 IT security (itsec)

This is a global role. It permits role holders to quarantine instances.

7.1.3 Project Manager (projectmanager)

This is the default role for project owners. It permits the following tasks:

• adding available roles to user associated in project

• revoking provided roles to a specific user in the project.

• adding an instance

• removing an instance

• removing an image

• adding a key

• managing network related operations

7.1.4 Network Administrator (netadmin)

A role which allows particular user to carry out network related operations such as:

• allocate publicly accessible IP addresses

• assign publicly accessible IP addresses

• create firewall rules

• modify firewall rules

7.1.5 Developer (developer)

This is a general purpose role that is assigned to users by default. This role can create and download keys.

Summary of role and permitted tasks for each role:

Role Management is done using "nova-manage role" command. Please refer to the section on OpenStack Commands for more
details.

Examples:

Add role to a user

nova-manage role add user1 netadmin

Remove a role from a particular user

nova-manage role remove user1 netadmin

7.1.6 Tabular representation of Roles

Roles Global Local Key
mgmt.

Instance
mgmt.

Image
mgmt.

Network
mgmt.

Project
mgmt.

Creating /
Modify-
ing
Firewall
Rules

Developer No Yes Yes No No No No No
Project
Manager No Yes Yes Yes Yes Yes Yes Yes

It Security Yes No Yes No No No No No
Cloud
Admin Yes No Yes Yes Yes Yes Yes Yes

Net
Admin No No No No No No No Yes

Table 7.1: Role representation

OpenStack Beginner’s guide 43

Chapter 8

Security

8.1 Security

OpenStack provides ingress filtering for the instances based on the concept of security groups. OpenStack accomplishes ingress
filtering by creating suitable IP Tables rules. A Security Group is a named set of rules that get applied to the incoming packets
for the instances. You can specify a security group while launching an instance. Each security group can have multiple rules
associated with it. Each rule specifies the source IP/network, protocol type, destination ports etc. Any packet matching these
parameters specified in a rule is allowed in. Rest of the packets are blocked.

A security group that does not have any rules associated with it causes blocking of all incoming traffic. The mechanism only
provides ingress filtering and does not provide any egress filtering. As a result all outbound traffic is allowed. If you need to
implement egress filtering, you will need to implement that inside the instance using a firewall.

Tools like Hybridfox let you manage security groups and also let you specify a security group while launching an instance. You
can also use command line tools from euca2ools package such as euca-authorize for this purpose.

Here are a few euca commands to manage security groups. Like in our earlier chapters, the project name is "proj"

Create a security group named "myservers".

euca-add-group -d "My Servers" myservers

Add a rule to the security group "myservers" allowing icmp and tcp traffic from 192.168.1.1.

euca-authorize -P tcp -s 192.168.1.1 -p 22 myservers
euca-authorize -P icmp -s 192.168.1.1 -t -1:-1 myservers

For a Windows instance, add a rule to accept incoming RDP connections

euca-authorize -P tcp -s 192.168.1.1 -p 3389 myservers

Rules can be viewed with euca-describe-groups command.

$ euca-describe-groups
GROUP proj myservers my servers
PERMISSION proj myservers ALLOWS tcp 22 22 FROM CIDR 192.168.1.1
PERMISSION proj myservers ALLOWS icmp -1 -1 FROM CIDR 192.168.1.1
PERMISSION proj myservers ALLOWS tcp 3389 3389 FROM CIDR 192.168.1.1

Remove the rule for ssh traffic from the source ip 192.168.1.1 from the security group "myservers"

euca-revoke -P tcp -s 192.168.1.1 -p 22 myservers

Delete the security group "myservers"

euca-delete-group myservers

Launch an instance associated with the security group "myservers".

euca-run-instances emi-XXXXXXXX -k mykey -g myservers

When you do not specify a security group, the instance gets associated with an inbuilt security group called "default". The rules
for this security group can also be modified using euca-add, euca-revoke commands.

Security Groups can also be viewed and manipulated using tools like HybridFox. A screenshot of listing of security groups in
HybridFox is below:

OpenStack Beginner’s guide 45

Chapter 9

OpenStack Commands

9.1 Nova Manage Commands

OpenStack provides commands for administrative tasks such as user/role management, network management etc. In all the
examples we will use username as "novadmin" and project name as "proj". All the nova-manage commands will need to be run
as "root". Either run them as root or run them under sudo.

9.1.1 User/Role Management

Add a new user

nova-manage user create novaadmin

Add a user with admin privileges

nova-manage user admin novaadmin

List existing users

nova-manage user list

Delete an existing user

nova-manage user delete novaadmin

Associate a user to a specific existing project

nova-manage project add proj novaadmin

Remove a user from a specific existing project.

nova-manage project remove proj novaadmin

View access key and secret keys of particular user.

nova-manage user exports novaadmin

Add a role to a particular user. Please refer to the chapter on "Role Based Access Controls" for more details on role management.

nova-manage role add novaadmin netadmin

Remove a role from a particular user

nova-manage role remove novaadmin netadmin

With the command below, you can change any or all of access key, secret key and admin role flag for a particular user.

Syntax:
nova-manage user modify username new_access_key new_secret_key admin_flag <admin flag - T ←↩

or F>

nova-manage user modify novaadmin mygreatnewaccesskey "" ""

nova-manage user modify novaadmin "" mygreatsecretkey ""

nova-manage user modify novaadmin "" "" T

Check if a particular user has a specific role or not. The role can be either local or global. The output of the command will be
True or False

nova-manage role has novaadmin cloudadmin
True

nova-manage role has novaadmin netadmin proj
False

9.1.2 Project Management

The following commands help you create and manage projects. "nova-manage account" command is an alias to "nova-manage
project" and you can use them interchangeably.

Create a project. It requires you to mention name of the project admin as well. css1 is the name of the project and user5 is the
name of the project admin here.

nova-manage project create css1 user5

List the registered projects.

nova-manage project list

Download the credentials and associated file for a specific project. Please refer to the chapter on "Installation & Configuration"
for more details.

nova-manage project zipfile csscorp user5 /home/user5/mysec.zip

Delete an existing project.

nova-manage project delete css1

Check the project wise resource allocation. The output will look like this:

nova-manage project quota css1
metadata_items: 128
gigabytes: 1000
floating_ips: 10
instances: 10
volumes: 10
cores: 20

OpenStack Beginner’s guide 47

9.1.3 Database Management

Nova stores the data related to the projects, users, resources etc. in a database, by default in a MySQL database.

Print the current database version.

nova-manage db version

Sync the DB schema to be in sync with the current configuration.

nova-manage db sync

9.1.4 Instance Type Management

Nova has the concept of instance types. Each instance type is defined with certain amount of RAM and certain size of the hard
disk. When an instance is launched with a particular instance type, Nova resizes the disk image to suit the instance type and
allocates the RAM as defined for the instance type chosen. Nova calls instance types as ’flavors’ and lets you add to the list of
flavors. By default Nova has 5 types - m1.tiny, m1.small, m1.medium, m1.large and m1.xlarge.

List the current instance types

nova-manage flavor list
m1.medium: Memory: 4096MB, VCPUS: 2, Storage: 40GB, FlavorID: 3, Swap: 0GB, RXTX Quota: 0 ←↩

GB, RXTX Cap: 0MB
m1.large: Memory: 8192MB, VCPUS: 4, Storage: 80GB, FlavorID: 4, Swap: 0GB,

RXTX Quota: 0GB, RXTX Cap: 0MB
m1.tiny: Memory: 512MB, VCPUS: 1, Storage: 0GB, FlavorID: 1, Swap: 0GB,

RXTX Quota: 0GB, RXTX Cap: 0MB
m1.xlarge: Memory: 16384MB, VCPUS: 8, Storage: 160GB, FlavorID: 5, Swap: 0GB, RXTX Quota: ←↩

0GB, RXTX Cap: 0MB
m1.small: Memory: 2048MB, VCPUS: 1, Storage: 20GB, FlavorID: 2, Swap: 0GB,

RXTX Quota: 0GB, RXTX Cap: 0MB

Define a new instance type

nova-manage flavor create m1.verytiny 256 2 20 6 0 0 0

Remove an existing instance type.

nova-manage flavor delete m1.verytiny
m1.verytiny deleted

9.1.5 Service Management

Check state of available services.

nova-manage service list
server1 nova-scheduler enabled :-) 2011-04-06 17:01:21
server1 nova-network enabled :-) 2011-04-06 17:01:30
server1 nova-compute enabled :-) 2011-04-06 17:01:22
server2 nova-compute enabled :-) 2011-04-06 17:01:28

Disable a running service

nova-manage service disable <hostname> <service>
nova-manage service disable server2 nova-compute

nova-manage service list
server1 nova-network enabled :-) 2011-04-06 17:05:11
server1 nova-compute enabled :-) 2011-04-06 17:05:13
server1 nova-scheduler enabled :-) 2011-04-06 17:05:17
server2 nova-compute disabled :-) 2011-04-06 17:05:19

Re-enable a service that is currently disabled

Syntax: nova-manage service enable <hostname> <service>
nova-manage service enable server2 nova-compute

nova-manage service list
server1 nova-scheduler enabled :-) 2011-04-06 17:08:23
server1 nova-network enabled :-) 2011-04-06 17:08:22
server1 nova-compute enabled :-) 2011-04-06 17:08:23
server2 nova-compute enabled :-) 2011-04-06 17:08:19

Get Information about resource utlization of the OpenStack components

Syntax: nova-manage service describe_resource <hostname>

nova-manage service describe_resource server1
HOST PROJECT cpu mem(mb) disk(gb)
server1(total) 2 3961 224
server1(used) 1 654 30
server1 proj 2 1024 0

9.1.6 Euca2ools Commands

euca2ools provide a set of commands to communicate with the cloud. All these commands require you to authenticate and this
is done by sourcing novarc file as detailed in the chapter on "Installation & Configuration"

Most of the euca2ools command line utilities work with OpenStack, just as they work with EC2 of AWS. There may be some
differences due to some of the functionality that is yet to be implemented in OpenStack. Help is available for each of these
commands with the switch --help.

• euca-add-group

• euca-delete-bundle

• euca-describe-instances

• euca-register

• euca-add-keypair

• euca-delete-group

• euca-describe-keypairs

• euca-release-address

• euca-allocate-address

• euca-delete-keypair

• euca-describe-regions

• euca-reset-image-attribute

• euca-associate-address

• euca-delete-snapshot

• euca-describe-snapshots

• euca-revoke

• euca-attach-volume

OpenStack Beginner’s guide 49

• euca-delete-volume

• euca-describe-volumes

• euca-run-instances

• euca-authorize

• euca-deregister

• euca-detach-volume

• euca-terminate-instances

• euca-bundle-image

• euca-describe-addresses

• euca-disassociate-address

• euca-unbundle

• euca-bundle-vol

• euca-describe-availabity-zones

• euca-download-bundle

• euca-upload-bundle

• euca-confirm-product-instance

• euca-describe-groups

• euca-get-console-output

• euca-version

• euca-create-snapshot

• euca-describe-image-attribute

• euca-modify-image-attribute

• euca-create-volume

• euca-describe-images

• euca-reboot-instances

