

OpenStack Beginner’s Guide
(for Ubuntu - Precise)

v3.0, 7 May 2012

Atul Jha
Johnson D

Kiran Murari
Murthy Raju
Vivek Cherian

Yogesh Girikumar

http://www.csscorp.com/

OpenStack Beginner’s Guide
(for Ubuntu - Precise)

v3.0, 7 May 2012

’Ubuntu’, the Ubuntu Logo and ’Canonical’ are registered trademarks of Canonical. Read
Canonical’s trademark policy here.

CSS, CSS Corp., and the CSS Corp logos are registered trademarks of CSS Corp. Pvt. Ltd

All other trademarks mentioned in the book belong to their respective owners.

This book is aimed at making it easy/simple for a beginner to build and maintain a private
cloud using OpenStack. This book will be updated periodically based on the suggestions, ideas,
corrections, etc., from readers.

Mail Feedback to: css.ossbooks@csscorp.com

Please report bugs in the content of this book at :
https://bugs.launchpad.net/openstackbook/+filebug and we will try to fix them as early as
possible and incorporate them in to the next version of the book.

Released under Creative Commons - Attribution-NonCommercial-ShareAlike 3.0 Unported
license.

A brief description of the license

A more detailed license text

CC $

BY NC SA

http://www.canonical.com/
http://www.ubuntu.com/aboutus/trademarkpolicy
http://www.csscorp.com/
mailto:css.ossbooks@csscorp.com
https://bugs.launchpad.net/openstackbook/+filebug
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode
http://creativecommons.org/licenses/by-nc-sa/3.0/

Preface

Introduction

We released the OpenStack Beginner’s Guide - Diablo version a few months earlier and it was
met with very positive response from users looking to set up a private cloud using OpenStack.
OpenStack has since become a lot more stable and robust. There are some significant additions
to the component family that comprises a typical OpenStack cloud setup. We are excited to give
you the next version of the guide which aims to help users get started with OpenStack Essex
on Ubuntu 12.04 LTS (Precise Pangolin). In this book, we have included (along with several
new content) sections that deal with the OpenStack identity service and the new OpenStack web
interface.

Target Audience

Our aim has been to provide a guide for a beginners who are new to OpenStack. Good famil-
iarity with virtualization is assumed, as troubleshooting OpenStack related problems requires
a good knowledge of virtualization. Similarly, familiarity with Cloud Computing concepts and
terminology will be of help. Prior exposure to AWS API and/or tools is not mandatory, though
such exposure will accelerate learning greatly.

Acknowledgement

Most of the content has been borrowed from web resources like manuals, documentation, white
papers etc. from OpenStack and Canonical; numerous posts on forums; discussions on the
OpenStack IRC Channel and many articles on the web including those of our colleagues at CSS
Corp. We would like to thank the authors of all these resources.

License

Attribution-Noncommercial-Share Alike 3.0 Unported. For the full version of the license text,
please refer to http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode and http:

//creativecommons.org/licenses/by-nc-sa/3.0 for a shorter description.

http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode
http://creativecommons.org/licenses/by-nc-sa/3.0
http://creativecommons.org/licenses/by-nc-sa/3.0

vi Preface

Feedback

We would really appreciate your feedback. We will enhance the book on an ongoing basis based
on your feedback. Please mail your feedback to css.ossbooks@csscorp.com.

OpenStack Beginner’s Guide: Ubuntu Precise Edition

mailto:css.ossbooks@csscorp.com

OpenStack Compute Starter Guide 1

Contents

1 Introduction to OpenStack and Its Components 7

1.1 Cloud Computing . 7

1.2 OpenStack . 7

1.2.1 Open Stack Compute Infrastructure (Nova) . 8

1.2.1.1 Functions and Features: . 9

1.2.1.2 Components of OpenStack Compute . 9

1.2.1.2.1 API Server (nova-api) . 9

1.2.1.2.2 Message Queue (Rabbit MQ Server) . 9

1.2.1.2.3 Compute Worker (nova-compute) . 9

1.2.1.2.4 Network Controller (nova-network) . 9

1.2.1.2.5 Volume Workers (nova-volume) . 10

1.2.1.2.6 Scheduler (nova-scheduler) . 10

1.2.2 OpenStack Imaging Service (Glance) . 10

1.2.2.1 Functions and Features . 10

1.2.2.2 Components of Glance . 10

1.2.3 OpenStack Storage Infrastructure (Swift) . 10

1.2.3.1 Functions and Features . 11

1.2.3.2 Components of Swift . 11

1.2.3.3 Swift Proxy Server . 11

1.2.3.4 Swift Object Server . 11

1.2.3.5 Swift Container server . 11

1.2.3.6 Swift Account Server . 11

1.2.3.7 The Ring . 12

1.2.4 OpenStack Identity Service (Keystone) . 12

1.2.4.1 Components of Identity Service . 12

1.2.5 Openstack Administrative Web-Interface (Horizon) . 13

2 Installation and Configuration 15

2.1 Introduction . 15

2.2 Server1 . 15

2.2.1 Base OS . 16

2.2.2 Network Configuration . 16

2.2.3 NTP Server . 16

2.2.4 Databases . 17

2.2.4.1 MySQL . 17

2.2.4.2 Creating Databases . 17

2.2.5 Keystone . 18

2.2.5.1 Creating Tenants . 19

2.2.5.2 Creating Users . 19

2.2.5.3 Creating Roles . 19

2.2.5.4 Listing Tenants, Users and Roles . 19

2.2.5.5 Adding Roles to Users in Tenants . 20

2.2.5.6 Creating Services . 20

2.2.5.7 Creating Endpoints . 21

2.2.6 Glance . 22

2.2.6.1 Glance Configuration . 22

2.2.7 Nova . 23

2.2.7.1 Nova Configuration . 23

2.2.7.2 OpenStack Dashboard . 25

2.2.7.3 Swift . 25

2.2.7.3.1 Swift Installation . 25

2.2.7.3.2 Swift Storage Backends . 25

2.2.7.3.2.1 Partition as a storage device . 26

2.2.7.3.2.2 Loopback File as a storage device . 26

2.2.7.3.2.3 Using the backend . 27

2.2.7.3.3 Configure Rsync . 27

2.2.7.3.4 Configure Swift Components . 29

2.2.7.3.4.1 Configure Swift Proxy Server . 29

2.2.7.3.4.2 Configure Swift Account Server . 30

2.2.7.3.4.3 Configure Swift Container Server . 31

2.2.7.3.4.4 Configure Swift Object Server . 32

2.2.7.3.4.5 Configure Swift Rings . 33

2.2.7.3.5 Starting Swift services . 33

2.2.7.3.6 Testing Swift . 34

2.2.8 Server2 . 34

2.2.8.1 BaseOS . 34

OpenStack Compute Starter Guide 3

2.2.8.2 Network Configuration . 34

2.2.8.3 NTP Client . 35

2.2.8.4 Nova Components (nova-compute alone) . 35

2.2.9 Client1 . 36

2.2.9.1 BaseOS . 36

2.2.9.2 Networking Configuration . 36

2.2.9.3 NTP Client . 36

2.2.9.4 Client Tools . 37

2.2.9.5 OpenStack Dashboard . 37

3 Image Management 39

3.1 Introduction . 39

3.2 Creating a Linux Image . 39

3.2.1 OS Installation . 39

3.2.1.1 Ubuntu . 40

3.2.1.2 Fedora . 40

3.2.1.3 OpenSUSE . 41

3.2.1.4 Debian . 41

3.2.1.5 CentOS 6 and RHEL 6 . 42

3.2.2 Uploading the Linux image . 42

3.3 Creating a Windows Image . 42

3.3.1 OS Installation . 43

3.3.1.1 Uploading the Windows image . 43

4 Instance Management 45

4.1 Introduction . 45

4.2 Openstack Command Line Tools . 46

4.2.1 Creation of Key Pairs . 46

4.2.2 Launch and manage instances . 46

5 OpenStack Dashboard (Horizon) 49

5.1 Login . 49

5.2 User Overview . 50

5.2.1 Instances . 50

5.2.2 Services . 51

5.2.3 Flavors . 52

5.2.4 Images . 53

5.2.5 Projects . 54

5.2.6 Users . 55

5.2.7 Users . 56

5.3 Project Overview . 57

5.3.1 Instances & Volumes . 58

5.3.2 Instances - VNC Console . 59

5.3.3 Images & Snapshots . 61

5.3.4 Access & Security . 62

5.4 Containers & Objects . 65

6 Storage Management 67

6.1 Nova-volume . 67

6.1.1 Interacting with Storage Controller . 67

6.1.2 Swift . 68

7 Network Management 71

7.1 Introduction . 71

8 Security 73

8.1 Security Overview . 73

9 OpenStack Commands 75

9.1 Nova Commands . 75

9.2 Glance Commands . 76

9.3 Swift Commands . 76

9.4 Keystone Commands . 76

OpenStack Compute Starter Guide 5

List of Tables

This is a tutorial style beginner’s guide for OpenStack™ on Ubuntu 12.04, Precise Pangolin. The aim is to help the reader in
setting up a minimal installation of OpenStack.

OpenStack Compute Starter Guide 7

Chapter 1

Introduction to OpenStack and Its Components

1.1 Cloud Computing

Cloud computing is a computing model, where resources such as computing power, storage, network and software are abstracted
and provided as services on the Internet in a remotely accessible fashion. Billing models for these services are generally similar
to the ones adopted for public utilities. On-demand availability, ease of provisioning, dynamic and virtually infinite scalability
are some of the key attributes of cloud computing.

An infrastructure setup using the cloud computing model is generally referred to as the "cloud". The following are the broad
categories of services available on the cloud:

• Infrastructure as a Service (IaaS)

• Platform as a Service (PaaS)

• Software as a Service (SaaS)

1.2 OpenStack

OpenStack is a collection of open source software projects that enterprises/service providers can use to setup and run their cloud
compute and storage infrastructure. Rackspace and NASA are the key initial contributors to the stack. Rackspace contributed
their "Cloud Files" platform (code) to power the Object Storage part of the OpenStack, while NASA contributed their "Nebula"
platform (code) to power the Compute part. OpenStack consortium has managed to have more than 150 members including
Canonical, Dell, Citrix etc.

There are 5 main service families under OpenStack

• Nova - Compute Service

• Swift - Storage Service

• Glance - Imaging Service

• Keystone - Identity Service

• Horizon - UI Service

The below diagram shows a simple representation of interaction between keystone and dashboard with the remaining OpenStack
components.

1.2.1 Open Stack Compute Infrastructure (Nova)

Nova is the Computing Fabric controller for the OpenStack Cloud. All activities needed to support the life cycle of instances
within the OpenStack cloud are handled by Nova. This makes Nova a Management Platform that manages compute resources,
networking, authorization, and scalability needs of the OpenStack cloud. But, Nova does not provide any virtualization capabil-
ities by itself; instead, it uses libvirt API to interact with supported hypervisors. Nova exposes all its capabilities through a web
services API that is compatible with the EC2 API of Amazon Web Services.

OpenStack Compute Starter Guide 9

1.2.1.1 Functions and Features:

• Instance life cycle management

• Management of compute resources

• Networking and Authorization

• REST-based API

• Asynchronous eventually consistent communication

• Hypervisor agnostic : support for Xen, XenServer/XCP, KVM, UML, VMware vSphere and Hyper-V

1.2.1.2 Components of OpenStack Compute

Nova Cloud Fabric is composed of the following major components:

• API Server (nova-api)

• Message Queue (rabbit-mq server)

• Compute Workers (nova-compute)

• Network Controller (nova-network)

• Volume Worker (nova-volume)

• Scheduler (nova-scheduler)

1.2.1.2.1 API Server (nova-api)

The API Server provides an interface for the outside world to interact with the cloud infrastructure. API server is the only
component that the outside world uses to manage the infrastructure. The management is done through web services calls using
EC2 API. The API Server then, in turn, communicates with the relevant components of the cloud infrastructure through the
Message Queue. As an alternative to EC2 API, OpenStack also provides a native API called "OpenStack API".

1.2.1.2.2 Message Queue (Rabbit MQ Server)

OpenStack communicates among themselves using the message queue via AMQP(Advanced Message Queue Protocol). Nova
uses asynchronous calls for request response, with a call-back that gets triggered once a response is received. Since asynchronous
communication is used, none of the user actions get stuck for long in a waiting state. This is effective since many actions expected
by the API calls such as launching an instance or uploading an image are time consuming.

1.2.1.2.3 Compute Worker (nova-compute)

Compute workers deal with instance management life cycle. They receive the requests for instance life cycle management via
the Message Queue and carry out operations. There are several compute workers in a typical production cloud deployment. An
instance is deployed on any of the available compute worker based on the scheduling algorithm used.

1.2.1.2.4 Network Controller (nova-network)

The Network Controller deals with the network configuration of host machines. It does operations like allocating IP addresses,
configuring VLANs for projects, implementing security groups and configuring networks for compute nodes.

1.2.1.2.5 Volume Workers (nova-volume)

Volume workers are used for management of LVM-based instance volumes. Volume Workers perform volume related functions
such as creation, deletion, attaching a volume to an instance, and detaching a volume from an instance. Volumes provide a way
of providing persistent storage for the instances, as the root partition is non-persistent and any changes made to it are lost when
an instance is terminated. When a volume is detached from an instance or when an instance, to which the volume is attached, is
terminated, it retains the data that was stored on it. This data can be accessed by re-attaching the volume to the same instance or
by attaching it to other instances.

Critical data in an instance must always be written to a volume, so that it can be accessed later. This typically applies to the
storage needs of database servers etc.

1.2.1.2.6 Scheduler (nova-scheduler)

The scheduler maps the nova-API calls to the appropriate OpenStack components. It runs as a daemon named nova-schedule and
picks up a compute server from a pool of available resources depending on the scheduling algorithm in place. A scheduler can
base its decisions on various factors such as load, memory, physical distance of the availability zone, CPU architecture, etc. The
nova scheduler implements a pluggable architecture.

Currently the nova-scheduler implements a few basic scheduling algorithms:

• chance: In this method, a compute host is chosen randomly across availability zones.

• availability zone: Similar to chance, but the compute host is chosen randomly from within a specified availability zone.

• simple: In this method, hosts whose load is least are chosen to run the instance. The load information may be fetched from a
load balancer.

1.2.2 OpenStack Imaging Service (Glance)

OpenStack Imaging Service is a lookup and retrieval system for virtual machine images. It can be configured to use any one of
the following storage backends:

• Local filesystem (default)

• OpenStack Object Store to store images

• S3 storage directly

• S3 storage with Object Store as the intermediate for S3 access.

• HTTP (read-only)

1.2.2.1 Functions and Features

• Provides imaging service

1.2.2.2 Components of Glance

• Glance-control

• Glance-registry

1.2.3 OpenStack Storage Infrastructure (Swift)

Swift provides a distributed, eventually consistent virtual object store for OpenStack. It is analogous to Amazon Web Services -
Simple Storage Service (S3). Swift is capable of storing billions of objects distributed across nodes. Swift has built-in redundancy
and failover management and is capable of archiving and media streaming. It is extremely scalable in terms of both size (several
petabytes) and capacity (number of objects).

OpenStack Compute Starter Guide 11

1.2.3.1 Functions and Features

• Storage of large number of objects

• Storage of large sized objects

• Data Redundancy

• Archival capabilities - Work with large datasets

• Data container for virtual machines and cloud apps

• Media Streaming capabilities

• Secure storage of objects

• Backup and archival

• Extreme scalability

1.2.3.2 Components of Swift

• Swift Account

• Swift Container

• Swift Object

• Swift Proxy

• The RING

1.2.3.3 Swift Proxy Server

The consumers interact with the Swift setup through the proxy server using the Swift API. The proxy server acts as a gatekeeper
and recieves requests from the world. It looks up the location of the appropriate entities and routes the requests to them.

The proxy server also handles failures of entities by rerouting requests to failover entities (handoff entities)

1.2.3.4 Swift Object Server

The Object server is a blob store. It’s responsibility is to handle storage, retrieval and deletion of objects stored in the local
storage. Objects are typically binary files stored in the filesystem with metadata contained as extended file attributes (xattr).

Note: xattr is supported in several filesystems such as ext3, ext4, XFS, Btrfs, JFS and ReiserFS in Linux. But it is known to work
best under XFS, JFS, ReiserFS, Reiser4, and ZFS. XFS is considered to be the best option.

1.2.3.5 Swift Container server

The container server lists the objects in a container. The lists are stored as SQLite files. The container server also tracks the
statistics like the number of objects contained and the storage size occupied by a container.

1.2.3.6 Swift Account Server

The account server lists containers the same way a container server lists objects.

1.2.3.7 The Ring

The ring contains information about the physical location of the objects stored inside Swift. It is a virtual representation of
mapping of names of entities to their real physical location. It is analogous to an indexing service that various processes use to
lookup and locate the real physical location of entities within the cluster. Entities like Accounts, Containers, Objects have their
own seperate rings.

1.2.4 OpenStack Identity Service (Keystone)

Keystone provides identity and access policy services for all components in the OpenStack family. It implements it’s own REST
based API (Identity API). It provides authentication and authorization for all components of OpenStack including (but not limited
to) Swift, Glance, Nova. Authentication verifies that a request actually comes from who it says it does. Authorization is verifying
whether the authenticated user has access to the services he/she is requesting for.

Keystone provides two ways of authentication. One is username/password based and the other is token based. Apart from that,
keystone provides the following services:

• Token Service (that carries authorization information about an authenticated user)

• Catalog Service (that contains a list of available services at the users’ disposal)

• Policy Service (that let’s keystone manage access to specific services by specific users or groups).

1.2.4.1 Components of Identity Service

• Endpoints - Every OpenStack service (Nova, Swift, Glance) runs on a dedicated port and on a dedicated URL(host), we call
them endpoints.

• Regions - A region defines a dedicated physical location inside a data centre. In a typical cloud setup, most if not all services
are distributed across data centers/servers which are also called regions

• User - A keystone authenticated user.

• Services - Each component that is being connected to or being administered via keystone can be called a service. For example,
we can call Glance a keystone service.

OpenStack Compute Starter Guide 13

• Role - In order to maintain restrictions as to what a particular user can do inside cloud infrastructure it is important to have a
role associated.

• Tenant - A tenant is a project with all the service endpoint and a role associated to user who is member of that particular tenant.

1.2.5 Openstack Administrative Web-Interface (Horizon)

Horizon the web based dashboard can be used to manage /administer OpenStack services. It can be used to manage instances
and images, create keypairs, attach volumes to instances, manipulate Swift containers etc. Apart from this, dashboard even gives
the user access to instance console and can connect to an instance through VNC. Overall, Horizon features the following:

• Instance Management - Create or terminate instance, view console logs and connect through VNC, Attaching volumes, etc.

• Access and Security Management - Create security groups, manage keypairs, assign floating IPs, etc.

• Flavor Management - Manage different flavors or instance virtual hardware templates.

• Image Management - Edit or delete images.

• View service catalog.

• Manage users, quotas and usage for projects.

• User Management - Create user, etc.

• Volume Management - Creating Volumes and snapshots.

• Object Store Manipulation - Create, delete containers and objects.

• Downloading environment variables for a project.

OpenStack Compute Starter Guide 15

Chapter 2

Installation and Configuration

2.1 Introduction

The following section describes how to set up a minimal cloud infrastructure based on OpenStack using 3 machines. These
machines are referred to in this and subsequent chapters as Server1, Server2 and Client1. Server1 runs all the components
of Nova, Glance, Swift, Keystone and Horizon (OpenStack Dashboard). Server2 runs only nova-compute. Since OpenStack
components follow a shared-nothing policy, each component or any group of components can be installed on any server.

Client1 is not a required component. In our sample setup, it is used for bundling images, as a client to the web interface and
to run OpenStack commands to manage the infrastructure. Having this client ensures that you do not need to meddle with the
servers for tasks such as bundling. Also, bundling of desktop Systems including Windows will require a GUI and it is better to
have a dedicated machine for this purpose. We would recommend this machine to be VT-Enabled so that KVM can be run which
allows launching of VMs during image creation for bundling.

The installation steps use certain specifics such as host names/IP addresses etc. Modify them to suit your environment before
using them. The following table summarizes these specifics.

2.2 Server1

As shown in the figure above, Server1 contains all nova- services including nova-compute, nova-api, nova-volume, nova-network,
Glance, Swift, Keystone and Horizon. It contains two network interface cards (NICs).

2.2.1 Base OS

Install 64 bit version of Ubuntu server 12.04 keeping the following configurations in mind.

• Create the first user with the name ’localadmin’ .

• Installation lets you setup the IP address for the first interface i.e. eth0. Set the IP address details.

• During installation select only Openssh-server in the packages menu.

We will also be running nova-volume on this server and it is ideal to have a dedicated partition for the use of nova-volume. So,
ensure that you choose manual partitioning scheme while installing Ubuntu Server and create a dedicated partition with adequate
amount of space for this purpose. We have referred to this partition in the rest of the chapter as /dev/sda6. You can substitute
the correct device name of this dedicated partition based on your local setup while following the instructions. Also ensure that
the partition type is set as Linux LVM (8e) using fdisk either during install or immediately after installation is over. If you also
plan to use a dedicated partition as Swift backend, create another partition for this purpose and follow the instructions in "Swift
Installation" section below.

Update the machine using the following commands.

sudo apt-get update
sudo apt-get upgrade

Install bridge-utils:

sudo apt-get install bridge-utils

2.2.2 Network Configuration

Edit the /etc/network/interfaces file so as to looks like this:

auto lo
iface lo inet loopback

auto eth0
iface eth0 inet static

address 10.10.10.2
netmask 255.255.255.0
broadcast 10.10.10.255
gateway 10.10.10.1
dns-nameservers 10.10.8.3

auto eth1
iface eth1 inet static

address 192.168.3.1
netmask 255.255.255.0
network 192.168.3.0
broadcast 192.168.3.255

Restart the network now

sudo /etc/init.d/networking restart

2.2.3 NTP Server

Install NTP package. This server shall act as the NTP server for the nodes. The time on all components of OpenStack will have
to be in sync. We can run NTP server on server1 and have other servers/nodes sync to it.

OpenStack Compute Starter Guide 17

sudo apt-get install ntp

Open the file /etc/ntp.conf and add the following lines to make sure that the time on the server stays in sync with an external
server. If the Internet connectivity is down, the NTP server uses its own hardware clock as the fallback.

server ntp.ubuntu.com
server 127.127.1.0
fudge 127.127.1.0 stratum 10

Restart the NTP server

sudo service ntp restart

Ensure that, IP addresses of the servers are resolvable by the DNS. If not, include the hostnames in /etc/hosts file.

2.2.4 Databases

You can use MySQL, PostgreSQL or SQLite for Nova and Glance. Depending upon your choice of database, you will need to
install the necessary packages and configure the database server.

2.2.4.1 MySQL

Install mysql-server and python-mysqldb package

sudo apt-get install mysql-server python-mysqldb

Create the root password for mysql. The password used in this guide is "mygreatsecret"

Change the bind address from 127.0.0.1 to 0.0.0.0 in /etc/mysql/my.cnf. It should be identical to this:

bind-address = 0.0.0.0

Restart MySQL server to ensure that it starts listening on all interfaces.

sudo restart mysql

2.2.4.2 Creating Databases

Create MySQL databases to be used with nova, glance and keystone.

Create a database named nova.

sudo mysql -uroot -pmygreatsecret -e ’CREATE DATABASE nova;’

Create a user named novadbadmin.

sudo mysql -uroot -pmygreatsecret -e ’CREATE USER novadbadmin;’

Grant all privileges for novadbadmin on the database "nova".

sudo mysql -uroot -pmygreatsecret -e "GRANT ALL PRIVILEGES ON nova.* TO ’novadbadmin’@’%’;"

Create a password for the user "novadbadmin".

sudo mysql -uroot -pmygreatsecret -e "SET PASSWORD FOR ’novadbadmin’@’%’ = PASSWORD(’ ←↩
novasecret’);"

Create a database named glance.

sudo mysql -uroot -pmygreatsecret -e ’CREATE DATABASE glance;’

Create a user named glancedbadmin.

sudo mysql -uroot -pmygreatsecret -e ’CREATE USER glancedbadmin;’

Grant all privileges for glancedbadmin on the database "glance".

sudo mysql -uroot -pmygreatsecret -e "GRANT ALL PRIVILEGES ON glance.* TO ’glancedbadmin’@ ←↩
’%’;"

Create a password for the user "glancedbadmin".

sudo mysql -uroot -pmygreatsecret -e "SET PASSWORD FOR ’glancedbadmin’@’%’ = PASSWORD(’ ←↩
glancesecret’);"

Create a database named keystone.

sudo mysql -uroot -pmygreatsecret -e ’CREATE DATABASE keystone;’

Create a user named keystonedbadmin.

sudo mysql -uroot -pmygreatsecret -e ’CREATE USER keystonedbadmin;’

Grant all privileges for keystonedbadmin on the database "keystone".

sudo mysql -uroot -pmygreatsecret -e "GRANT ALL PRIVILEGES ON keystone.* TO ’ ←↩
keystonedbadmin’@’%’;"

Create a password for the user "keystonedbadmin".

sudo mysql -uroot -pmygreatsecret -e "SET PASSWORD FOR ’keystonedbadmin’@’%’ = PASSWORD(’ ←↩
keystonesecret’);"

2.2.5 Keystone

Keystone is the identity service used by OpenStack. Install Keystone using the following command.

sudo apt-get install keystone python-keystone python-keystoneclient

Open /etc/keystone/keystone.conf and change the line

admin_token = ADMIN

so that it looks like the following:

admin_token = admin

(We have used ’admin’ as the token in this book.)

Since MySQL database is used to store keystone configuration, replace the following line in /etc/keystone/keystone.conf

connection = sqlite:////var/lib/keystone/keystone.db

with

connection = mysql://keystonedbadmin:keystonesecret@10.10.10.2/keystone

OpenStack Compute Starter Guide 19

Restart Keystone:

sudo service keystone restart

Run the following command to synchronise the database:

sudo keystone-manage db_sync

Export environment variables which are required while working with OpenStack.

export SERVICE_ENDPOINT="http://localhost:35357/v2.0"
export SERVICE_TOKEN=admin

You can also add these variables to ~/.bashrc, so that you need not have to export them everytime.

2.2.5.1 Creating Tenants

Create the tenants by executing the following commands. In this case, we are creating two tenants - admin and service.

keystone tenant-create --name admin
keystone tenant-create --name service

2.2.5.2 Creating Users

Create the users by executing the following commands. In this case, we are creating four users - admin, nova, glance and swift

keystone user-create --name admin --pass admin --email admin@foobar.com
keystone user-create --name nova --pass nova --email nova@foobar.com
keystone user-create --name glance --pass glance --email glance@foobar.com
keystone user-create --name swift --pass swift --email swift@foobar.com

2.2.5.3 Creating Roles

Create the roles by executing the following commands. In this case, we are creating two roles - admin and Member.

keystone role-create --name admin
keystone role-create --name Member

2.2.5.4 Listing Tenants, Users and Roles

The tenants, users and roles that have been created above can be listed by following commands:

List Tenants:

keystone tenant-list
+----------------------------------+--------------------+---------+
| id | name | enabled |
+----------------------------------+--------------------+---------+
| 7f95ae9617cd496888bc412efdceabfd | admin | True |
| c7970080576646c6959ee35970cf3199 | service | True |
+----------------------------------+--------------------+---------+

List Users:

keystone user-list
+----------------------------------+---------+-------------------+--------+
| id | enabled | email | name |
+----------------------------------+---------+-------------------+--------+
1b986cca67e242f38cd6aa4bdec587ca	True	swift@foobar.com	swift
518b51ea133c4facadae42c328d6b77b	True	glance@foobar.com	glance
b3de3aeec2544f0f90b9cbfe8b8b7acd	True	admin@foobar.com	admin
ce8cd56ca8824f5d845ba6ed015e9494	True	nova@foobar.com	nova
+----------------------------------+---------+-------------------+--------+

List Roles:

keystone role-list
+----------------------------------+----------------------+
| id | name |
+----------------------------------+----------------------+
| 2bbe305ad531434991d4281aaaebb700 | admin |
| d983800dd6d54ee3a1b1eb9f2ae3291f | Member |
+----------------------------------+----------------------+

Please note that the values of the ’id’ column, would be required later when we associate a role to a user in a particular tenant.

2.2.5.5 Adding Roles to Users in Tenants

Now we add roles to the users that have been created. A role to a specific user in a specific tenant can be assigned with the
following command:

keystone user-role-add --user $USER_ID --role $ROLE_ID --tenant_id $TENANT_ID

The required ’id’ can be obtained from the commands - keystone user-list, keystone tenant-list, keystone role-list.

To add a role of ’admin’ to the user ’admin’ of the tenant ’admin’.

keystone user-role-add --user b3de3aeec2544f0f90b9cbfe8b8b7acd --role 2 ←↩
bbe305ad531434991d4281aaaebb700 --tenant_id 7f95ae9617cd496888bc412efdceabfd

The following commands will add a role of ’admin’ to the users ’nova’, ’glance’ and ’swift’ of the tenant ’service’.

keystone user-role-add --user ce8cd56ca8824f5d845ba6ed015e9494 --role 2 ←↩
bbe305ad531434991d4281aaaebb700 --tenant_id c7970080576646c6959ee35970cf3199

keystone user-role-add --user 518b51ea133c4facadae42c328d6b77b --role 2 ←↩
bbe305ad531434991d4281aaaebb700 --tenant_id c7970080576646c6959ee35970cf3199

keystone user-role-add --user 1b986cca67e242f38cd6aa4bdec587ca --role 2 ←↩
bbe305ad531434991d4281aaaebb700 --tenant_id c7970080576646c6959ee35970cf3199

The ’Member’ role is used by Horizon and Swift. So add the ’Member’ role accordingly.

keystone user-role-add --user b3de3aeec2544f0f90b9cbfe8b8b7acd --role ←↩
d983800dd6d54ee3a1b1eb9f2ae3291f --tenant_id 7f95ae9617cd496888bc412efdceabfd

Replace the id appropriately as listed by keystone user-list, keystone role-list, keystone tenant-list.

2.2.5.6 Creating Services

Now we need to create the required services which the users can authenticate with. nova-compute, nova-volume, glance, swift,
keystone and ec2 are some of the services that we create.

keystone service-create --name service_name --type service_type --description ’Description ←↩
of the service’

OpenStack Compute Starter Guide 21

keystone service-create --name nova --type compute --description ’OpenStack Compute Service ←↩
’

keystone service-create --name volume --type volume --description ’OpenStack Volume Service ←↩
’

keystone service-create --name glance --type image --description ’OpenStack Image Service’
keystone service-create --name swift --type object-store --description ’OpenStack Storage ←↩

Service’
keystone service-create --name keystone --type identity --description ’OpenStack Identity ←↩

Service’
keystone service-create --name ec2 --type ec2 --description ’EC2 Service’

Each of the services that have been created above will be identified with a unique id which can be obtained from the following
command:

keystone service-list
+----------------------------------+----------+--------------+----------------------------+
| id | name | type | description |
+----------------------------------+----------+--------------+----------------------------+
1e93ee6c70f8468c88a5cb1b106753f3	nova	compute	OpenStack Compute Service
28fd92ffe3824004996a3e04e059d875	ec2	ec2	EC2 Service
7d4ec192dfa1456996f0f4c47415c7a7	keystone	identity	OpenStack Identity Service
96f35e1112b143e59d5cd5d0e6a8b22d	swift	object-store	OpenStack Storage Service
f38f4564ff7b4e43a52b2f5c1b75e5fa	volume	volume	OpenStack Volume Service
fbafab6edcab467bb734380ce6be3561	glance	image	OpenStack Image Service
+----------------------------------+----------+--------------+----------------------------+

The ’id’ will be used in defining the endpoint for that service.

2.2.5.7 Creating Endpoints

Create endpoints for each of the services that have been created above.

keystone endpoint-create --region region_name --service_id service_id --publicurl ←↩
public_url --adminurl admin_url --internalurl internal_url

For creating an endpoint for nova-compute, execute the following command:

keystone endpoint-create --region myregion --service_id 1e93ee6c70f8468c88a5cb1b106753f3 -- ←↩
publicurl ’http://10.10.10.2:8774/v2/$(tenant_id)s’ --adminurl ’http://10.10.10.2:8774/ ←↩
v2/$(tenant_id)s’ --internalurl ’http://10.10.10.2:8774/v2/$(tenant_id)s’

For creating an endpoint for nova-volume, execute the following command:

keystone endpoint-create --region myregion --service_id f38f4564ff7b4e43a52b2f5c1b75e5fa -- ←↩
publicurl ’http://10.10.10.2:8776/v1/$(tenant_id)s’ --adminurl ’http://10.10.10.2:8776/ ←↩
v1/$(tenant_id)s’ --internalurl ’http://10.10.10.2:8776/v1/$(tenant_id)s’

For creating an endpoint for glance, execute the following command:

keystone endpoint-create --region myregion --service_id fbafab6edcab467bb734380ce6be3561 -- ←↩
publicurl ’http://10.10.10.2:9292/v1’ --adminurl ’http://10.10.10.2:9292/v1’ -- ←↩
internalurl ’http://10.10.10.2:9292/v1’

For creating an endpoint for swift, execute the following command:

keystone endpoint-create --region myregion --service_id 96f35e1112b143e59d5cd5d0e6a8b22d -- ←↩
publicurl ’http://10.10.10.2:8080/v1/AUTH_$(tenant_id)s’ --adminurl ’http ←↩
://10.10.10.2:8080/v1’ --internalurl ’http://10.10.10.2:8080/v1/AUTH_$(tenant_id)s’

For creating an endpoint for keystone, execute the following command:

keystone endpoint-create --region myregion --service_id 7d4ec192dfa1456996f0f4c47415c7a7 -- ←↩
publicurl http://10.10.10.2:5000/v2.0 --adminurl http://10.10.10.2:35357/v2.0 -- ←↩
internalurl http://10.10.10.2:5000/v2.0

For creating an endpoint for ec2, execute the following command:

keystone endpoint-create --region myregion --service_id 28fd92ffe3824004996a3e04e059d875 -- ←↩
publicurl http://10.10.10.2:8773/services/Cloud --adminurl http://10.10.10.2:8773/ ←↩
services/Admin --internalurl http://10.10.10.2:8773/services/Cloud

2.2.6 Glance

Install glance using the following command:

sudo apt-get install glance glance-api glance-client glance-common glance-registry python- ←↩
glance

2.2.6.1 Glance Configuration

Glance uses SQLite by default. MySQL and PostgreSQL can also be configured to work with Glance.

Open /etc/glance/glance-api-paste.ini and at the end of the file, edit the following lines:

admin_tenant_name = %SERVICE_TENANT_NAME%
admin_user = %SERVICE_USER%
admin_password = %SERVICE_PASSWORD%

These values have to be modified as per the configurations made earlier. The admin_tenant_name will be ’service’, admin_user
will be ’glance’ and admin_password is ’glance’.

After editing, the lines should be as follows:

admin_tenant_name = service
admin_user = glance
admin_password = glance

Now open /etc/glance/glance-registry-paste.ini and make similar changes at the end of the file.

Open the file /etc/glance/glance-registry.conf and edit the line which contains the option "sql_connection =" to this:

sql_connection = mysql://glancedbadmin:glancesecret@10.10.10.2/glance

In order to tell glance to use keystone for authentication, add the following lines at the end of the file.

[paste_deploy]
flavor = keystone

Open /etc/glance/glance-api.conf and add the following lines at the end of the document.

[paste_deploy]
flavor = keystone

Create glance schema in the MySQL database.:

sudo glance-manage version_control 0
sudo glance-manage db_sync

Restart glance-api and glance-registry after making the above changes.

OpenStack Compute Starter Guide 23

sudo restart glance-api

sudo restart glance-registry

Export the following environment variables.

export SERVICE_TOKEN=admin
export OS_TENANT_NAME=admin
export OS_USERNAME=admin
export OS_PASSWORD=admin
export OS_AUTH_URL="http://localhost:5000/v2.0/"
export SERVICE_ENDPOINT=http://localhost:35357/v2.0

Alternatively, you can add these variables to ~/.bashrc.

To test if glance is setup correectly execute the following command.

glance index

The above command will not return any output. The output of the last command executed can be known from its return code -
echo $?. If the return code is zero, then glance is setup properly and connects with Keystone.

With glance configured properly and using keystone as the authentication mechanism, now we can upload images to glance. This
has been explained in detail in "Image Management" chapter.

2.2.7 Nova

Install nova using the following commands:

sudo apt-get install nova-api nova-cert nova-compute nova-compute-kvm nova-doc nova-network ←↩
nova-objectstore nova-scheduler nova-volume rabbitmq-server novnc nova-consoleauth

2.2.7.1 Nova Configuration

Edit the /etc/nova/nova.conf file to look like this.

--dhcpbridge_flagfile=/etc/nova/nova.conf
--dhcpbridge=/usr/bin/nova-dhcpbridge
--logdir=/var/log/nova
--state_path=/var/lib/nova
--lock_path=/run/lock/nova
--allow_admin_api=true
--use_deprecated_auth=false
--auth_strategy=keystone
--scheduler_driver=nova.scheduler.simple.SimpleScheduler
--s3_host=10.10.10.2
--ec2_host=10.10.10.2
--rabbit_host=10.10.10.2
--cc_host=10.10.10.2
--nova_url=http://10.10.10.2:8774/v1.1/
--routing_source_ip=10.10.10.2
--glance_api_servers=10.10.10.2:9292
--image_service=nova.image.glance.GlanceImageService
--iscsi_ip_prefix=192.168.4
--sql_connection=mysql://novadbadmin:novasecret@10.10.10.2/nova
--ec2_url=http://10.10.10.2:8773/services/Cloud
--keystone_ec2_url=http://10.10.10.2:5000/v2.0/ec2tokens
--api_paste_config=/etc/nova/api-paste.ini
--libvirt_type=kvm

--libvirt_use_virtio_for_bridges=true
--start_guests_on_host_boot=true
--resume_guests_state_on_host_boot=true
vnc specific configuration
--novnc_enabled=true
--novncproxy_base_url=http://10.10.10.2:6080/vnc_auto.html
--vncserver_proxyclient_address=10.10.10.2
--vncserver_listen=10.10.10.2
network specific settings
--network_manager=nova.network.manager.FlatDHCPManager
--public_interface=eth0
--flat_interface=eth1
--flat_network_bridge=br100
--fixed_range=192.168.4.1/27
--floating_range=10.10.10.2/27
--network_size=32
--flat_network_dhcp_start=192.168.4.33
--flat_injected=False
--force_dhcp_release
--iscsi_helper=tgtadm
--connection_type=libvirt
--root_helper=sudo nova-rootwrap
--verbose

Create a Physical Volume.

sudo pvcreate /dev/sda6

Create a Volume Group named nova-volumes.

sudo vgcreate nova-volumes /dev/sda6

Change the ownership of the /etc/nova folder and permissions for /etc/nova/nova.conf:

sudo chown -R nova:nova /etc/nova
sudo chmod 644 /etc/nova/nova.conf

Open /etc/nova/api-paste.ini and at the end of the file, edit the following lines:

admin_tenant_name = %SERVICE_TENANT_NAME%
admin_user = %SERVICE_USER%
admin_password = %SERVICE_PASSWORD%

These values have to be modified conforming to configurations made earlier. The admin_tenant_name will be ’service’, ad-
min_user will be ’nova’ and admin_password is ’nova’.

After editing, the lines should be as follows:

admin_tenant_name = service
admin_user = nova
admin_password = nova

Create nova schema in the MySQL database.

sudo nova-manage db sync

Provide a range of IPs to be associated to the instances.

nova-manage network create private --fixed_range_v4=192.168.4.32/27 --num_networks=1 -- ←↩
bridge=br100 --bridge_interface=eth1 --network_size=32

Export the following environment variables.

OpenStack Compute Starter Guide 25

export OS_TENANT_NAME=admin
export OS_USERNAME=admin
export OS_PASSWORD=admin
export OS_AUTH_URL="http://localhost:5000/v2.0/"

Restart nova services.

sudo restart libvirt-bin; sudo restart nova-network; sudo restart nova-compute; sudo ←↩
restart nova-api; sudo restart nova-objectstore; sudo restart nova-scheduler; sudo ←↩
restart nova-volume; sudo restart nova-consoleauth;

To test if nova is setup correctly run the following command.

sudo nova-manage service list
Binary Host Zone Status State Updated_At
nova-network server1 nova enabled :-) 2012-04-20 08:58:43
nova-scheduler server1 nova enabled :-) 2012-04-20 08:58:44
nova-volume server1 nova enabled :-) 2012-04-20 08:58:44
nova-compute server1 nova enabled :-) 2012-04-20 08:58:45
nova-cert server1 nova enabled :-) 2012-04-20 08:58:43

If the output is similar to the above with all components happy, your setup is ready to be used.

2.2.7.2 OpenStack Dashboard

Install OpenStack Dashboard by executing the following command:

sudo apt-get install openstack-dashboard

Restart apache with the following command:

service apache2 restart

Open a browser and enter IP address of the server1. You should see the OpenStack Dashboard login prompt. Login with username
’admin’ and password ’admin’. From the dashboard, you can create keypairs, create/edit security groups, raise new instances,
attach volumes etc. which are explained in "OpenStack Dashboard" chapter.

2.2.7.3 Swift

2.2.7.3.1 Swift Installation

The primary components are the proxy, account, container and object servers.

sudo apt-get install swift swift-proxy swift-account swift-container swift-object

Other components that might be xfsprogs (for dealing with XFS filesystem), python.pastedeploy (for keystone access), curl (to
test swift).

sudo apt-get install xfsprogs curl python-pastedeploy

2.2.7.3.2 Swift Storage Backends

There are two methods one can try to create/prepare the storage backend. One is to use an existing partition/volume as the storage
device. The other is to create a loopback file and use it as the storage device. Use the appropriate method as per your setup.

2.2.7.3.2.1 Partition as a storage device

If you had set aside a partition for Swift during the installation of the OS, you can use it directly. If you have an unused/unparti-
tioned physical partition (e.g. /dev/sdb3), you have to format it to xfs filesystem using parted or fdisk and use it as the backend.
You need to specify the mount point in /etc/fstab.

CAUTION: Replace /dev/sdb to your appropriate device. I’m assuming that there is an unused/ ←↩
un-formatted partition section in /dev/sdb

sudo fdisk /dev/sdb

Type n for new partition
Type e for extended partion
Choose appropriate partition number (or go with the default)
Choose first and last sectors to set the hard disk size (or go with defaults)
Note that 83 is the partition type number for Linux
Type w to write changes to the disk

This would have created a partition (something like /dev/sdb3) that we can now format to XFS filesystem. Do ’sudo fdisk -l’ in
the terminal to view and verify the partion table. Find the partition Make sure that the one that you want to use is listed there.
This would work only if you have xfsprogs installed.

sudo mkfs.xfs -i size=1024 /dev/sdb3
sudo tune2fs -l /dev/sdb3 |grep -i inode

Create a directory /mnt/swift_backend that can be used as a mount point to the partion tha we created.

sudo mkdir /mnt/swift_backend

Now edit /etc/fstab and append the following line to mount the partition automatically everytime the system restarts.

/dev/sdb3 /mnt/swift_backend xfs noatime,nodiratime,nobarrier,logbufs=8 0 0

2.2.7.3.2.2 Loopback File as a storage device

We create a zero filled file for use as a loopback device for the Swift storage backend. Here we use the disk copy command to
create a file named swift-disk and allocate a million 1KiB blocks (976.56 MiB) to it. So we have a loopback disk of approximately
1GiB. We can increase this size by modifying the seek value. The disk is then formated to XFS filesystem. The file command
can be used to verify if it worked.

sudo dd if=/dev/zero of=/srv/swift-disk bs=1024 count=0 seek=1000000
sudo mkfs.xfs -i size=1024 /srv/swift-disk
file /srv/swift-disk
swift-disk1: SGI XFS filesystem data (blksz 4096, inosz 1024, v2 dirs)

Create a directory /mnt/swift_backend that can be used as a mount point to the partion tha we created.

sudo mkdir /mnt/swift_backend

Make it mount on boot by appending this to /etc/fstab.

/srv/swift-disk /mnt/swift_backend xfs loop,noatime,nodiratime,nobarrier,logbufs=8 0 0

OpenStack Compute Starter Guide 27

2.2.7.3.2.3 Using the backend

Now before mounting the backend that will be used, create some nodes to be used as storage devices and set ownership to ’swift’
user and group.

sudo mount /mnt/swift_backend
pushd /mnt/swift_backend
sudo mkdir node1 node2 node3 node4
popd

sudo chown swift.swift /mnt/swift_backend/*

for i in {1..4}; do sudo ln -s /mnt/swift_backend/node$i /srv/node$i; done;

sudo mkdir -p /etc/swift/account-server /etc/swift/container-server /etc/swift/object- ←↩
server /srv/node1/device /srv/node2/device /srv/node3/device /srv/node4/device

sudo mkdir /run/swift
sudo chown -L -R swift.swift /etc/swift /srv/node[1-4]/ /run/swift

Append the following lines in /etc/rc.local just before "exit 0";. This will be run everytime the system starts.

mkdir /run/swift
chown swift.swift /run/swift

2.2.7.3.3 Configure Rsync

Rsync is responsible for maintaining object replicas. It is used by various swift services to maintain consistency of objects and
perform updation operations. It is configured for all the storage nodes.

Set RSYNC_ENABLE=true in /etc/default/rsync.

Modify /etc/rsyncd.conf as follows:

General stuff
uid = swift
gid = swift
log file = /var/log/rsyncd.log
pid file = /run/rsyncd.pid
address = 127.0.0.1

Account Server replication settings

[account6012]
max connections = 25
path = /srv/node1/
read only = false
lock file = /run/lock/account6012.lock

[account6022]
max connections = 25
path = /srv/node2/
read only = false
lock file = /run/lock/account6022.lock

[account6032]
max connections = 25
path = /srv/node3/
read only = false
lock file = /run/lock/account6032.lock

[account6042]
max connections = 25
path = /srv/node4/
read only = false
lock file = /run/lock/account6042.lock

Container server replication settings

[container6011]
max connections = 25
path = /srv/node1/
read only = false
lock file = /run/lock/container6011.lock

[container6021]
max connections = 25
path = /srv/node2/
read only = false
lock file = /run/lock/container6021.lock

[container6031]
max connections = 25
path = /srv/node3/
read only = false
lock file = /run/lock/container6031.lock

[container6041]
max connections = 25
path = /srv/node4/
read only = false
lock file = /run/lock/container6041.lock

Object Server replication settings

[object6010]
max connections = 25
path = /srv/node1/
read only = false
lock file = /run/lock/object6010.lock

[object6020]
max connections = 25
path = /srv/node2/
read only = false
lock file = /run/lock/object6020.lock

[object6030]
max connections = 25
path = /srv/node3/
read only = false
lock file = /run/lock/object6030.lock

[object6040]
max connections = 25
path = /srv/node4/
read only = false
lock file = /run/lock/object6040.lock

Restart rsync.

sudo service rsync restart

OpenStack Compute Starter Guide 29

2.2.7.3.4 Configure Swift Components

General server configuration options can be found in http://swift.openstack.org/deployment_guide.html. If the swift-doc package
is installed it can also be viewed in the /usr/share/doc/swift-doc/html directory. Python uses paste.deploy to manage configuration.
Default configuration options are set in the [DEFAULT] section, and any options specified there can be overridden in any of the
other sections BUT ONLY BY USING THE SYNTAX set option_name = value.

Here is a sample paste.deploy configuration for reference:

[DEFAULT]
name1 = globalvalue
name2 = globalvalue
name3 = globalvalue
set name4 = globalvalue

[pipeline:main]
pipeline = myapp

[app:myapp]
use = egg:mypkg#myapp
name2 = localvalue
set name3 = localvalue
set name5 = localvalue
name6 = localvalue

Create and edit /etc/swift/swift.conf and add the following lines to it:

[swift-hash]
random unique string that can never change (DO NOT LOSE). I’m using 03c9f48da2229770.
od -t x8 -N 8 -A n < /dev/random
The above command can be used to generate random a string.
swift_hash_path_suffix = 03c9f48da2229770

You will need the random string when you add more nodes to the setup. So never lose the string.

You can generate a random string by running the following command:

od -t x8 -N 8 -A n < /dev/random

2.2.7.3.4.1 Configure Swift Proxy Server

Proxy server acts as the gatekeeper to swift. It takes the responsibility of authenticating the user. Authentication verifies that a
request actually comes from who it says it does. Authorization verifies the ‘who’ has access to the resource(s) the request wants.
Authorization is done by identity services like keystone. Create and edit /etc/swift/proxy-server.conf and add the following lines.

[DEFAULT]
bind_port = 8080
user = swift
swift_dir = /etc/swift

[pipeline:main]
Order of execution of modules defined below
pipeline = catch_errors healthcheck cache authtoken keystone proxy-server

[app:proxy-server]
use = egg:swift#proxy
allow_account_management = true
account_autocreate = true
set log_name = swift-proxy
set log_facility = LOG_LOCAL0
set log_level = INFO

set access_log_name = swift-proxy
set access_log_facility = SYSLOG
set access_log_level = INFO
set log_headers = True
account_autocreate = True

[filter:healthcheck]
use = egg:swift#healthcheck

[filter:catch_errors]
use = egg:swift#catch_errors

[filter:cache]
use = egg:swift#memcache
set log_name = cache

[filter:authtoken]
paste.filter_factory = keystone.middleware.auth_token:filter_factory
auth_protocol = http
auth_host = 127.0.0.1
auth_port = 35357
auth_token = admin
service_protocol = http
service_host = 127.0.0.1
service_port = 5000
admin_token = admin
admin_tenant_name = service
admin_user = swift
admin_password = swift
delay_auth_decision = 0

[filter:keystone]
paste.filter_factory = keystone.middleware.swift_auth:filter_factory
operator_roles = admin, swiftoperator
is_admin = true

Note: You can find sample configuration files at the "etc" directory in the source. Some documentation can be found under
"/usr/share/doc/swift-doc/html" if you had installed the swift-doc package using apt-get.

2.2.7.3.4.2 Configure Swift Account Server

The default swift account server configuration is /etc/swift/account-server.conf.

[DEFAULT]
bind_ip = 0.0.0.0
workers = 2

[pipeline:main]
pipeline = account-server

[app:account-server]
use = egg:swift#account

[account-replicator]

[account-auditor]

[account-reaper]

Account server configuration files are also looked up under /etc/swift/account-server.conf. Here we can create several account
server configuration files each of which would correspond to a device under /srv. The files can be named 1.conf, 2.conf and so

OpenStack Compute Starter Guide 31

on. Here are the contents of /etc/swift/account-server/1.conf:

[DEFAULT]
devices = /srv/node1
mount_check = false
bind_port = 6012
user = swift
log_facility = LOG_LOCAL2

[pipeline:main]
pipeline = account-server

[app:account-server]
use = egg:swift#account

[account-replicator]
vm_test_mode = no

[account-auditor]

[account-reaper]

For the other devices, (/srv/node2, /srv/node3, /srv/node4), we create 2.conf, 3.conf and 4.conf. So we make three more copies of
1.conf and set unique bind ports for the rest of the nodes (6022, 6032 and 6042) and different local log values (LOG_LOCAL3,
LOG_LOCAL4, LOG_LOCAL5).

sudo cp /etc/swift/account-server/1.conf /etc/swift/account-server/2.conf
sudo cp /etc/swift/account-server/1.conf /etc/swift/account-server/3.conf
sudo cp /etc/swift/account-server/1.conf /etc/swift/account-server/4.conf
sudo sed -i ’s/6012/6022/g;s/LOCAL2/LOCAL3/g;s/node1/node2/g’ /etc/swift/account-server/2. ←↩

conf
sudo sed -i ’s/6012/6032/g;s/LOCAL2/LOCAL4/g;s/node1/node3/g’ /etc/swift/account-server/3. ←↩

conf
sudo sed -i ’s/6012/6042/g;s/LOCAL2/LOCAL5/g;s/node1/node4/g’ /etc/swift/account-server/4. ←↩

conf

2.2.7.3.4.3 Configure Swift Container Server

The default swift container server configuration is /etc/swift/container-server.conf.

[DEFAULT]
bind_ip = 0.0.0.0
workers = 2

[pipeline:main]
pipeline = container-server

[app:container-server]
use = egg:swift#container

[container-replicator]

[container-updater]

[container-auditor]

[container-sync]

Container server configuration files are also looked up under /etc/swift/container-server.conf. Here we can create several con-
tainer server configuration files each of which would correspond to a device under /srv. The files can be named 1.conf, 2.conf
and so on. Here are the contents of /etc/swift/container-server/1.conf:

[DEFAULT]
devices = /srv/node1
mount_check = false
bind_port = 6011
user = swift
log_facility = LOG_LOCAL2

[pipeline:main]
pipeline = container-server

[app:container-server]
use = egg:swift#container

[container-replicator]
vm_test_mode = no

[container-updater]

[container-auditor]

[container-sync]

For the other devices, (/srv/node2, /srv/node3, /srv/node4), we create 2.conf, 3.conf and 4.conf. So we make three more copies of
1.conf and set unique bind ports for the rest of the nodes (6021, 6031 and 6041) and different local log values (LOG_LOCAL3,
LOG_LOCAL4, LOG_LOCAL5).

2.2.7.3.4.4 Configure Swift Object Server

The default swift object server configuration is /etc/swift/object-server.conf.

[DEFAULT]
bind_ip = 0.0.0.0
workers = 2

[pipeline:main]
pipeline = object-server

[app:object-server]
use = egg:swift#object

[object-replicator]

[object-updater]

[object-auditor]

Object server configuration files are also looked up under /etc/swift/object-server.conf. Here we can create several object server
configuration files each of which would correspond to a device under /srv. The files can be named 1.conf, 2.conf and so on. Here
are the contents of /etc/swift/object-server/1.conf:

[DEFAULT]
devices = /srv/node1
mount_check = false
bind_port = 6010
user = swift
log_facility = LOG_LOCAL2

[pipeline:main]
pipeline = object-server

OpenStack Compute Starter Guide 33

[app:object-server]
use = egg:swift#object

[object-replicator]
vm_test_mode = no

[object-updater]

[object-auditor]

For the other devices, (/srv/node2, /srv/node3, /srv/node4), we create 2.conf, 3.conf and 4.conf. So we make three more copies of
1.conf and set unique bind ports for the rest of the nodes (6020, 6030 and 6040) and different local log values (LOG_LOCAL3,
LOG_LOCAL4, LOG_LOCAL5).

2.2.7.3.4.5 Configure Swift Rings

Ring is an important component of swift. It maintains the information about the physical location of objects, their replicas and
devices. We now create the ring builder files corresponding to object service, container service and account service.

NOTE: We need to be in the /etc/swift directory when executing the following commands.

pushd /etc/swift
sudo swift-ring-builder object.builder create 18 3 1
sudo swift-ring-builder container.builder create 18 3 1
sudo swift-ring-builder account.builder create 18 3 1

The numbers indicate the desired number of partitions, replicas and the time in hours to restrict moving a partition more than
once. See the man page for swift-ring-builder for more information.

Now we add zones and balance the rings. The syntax is as follows:

swift-ring-builder <builder_file> add <zone>-<ip_address>:<port>/<device> <weight>

Execute the following commands to add the zones and rebalance the ring.

sudo swift-ring-builder object.builder add z1-127.0.0.1:6010/device 1
sudo swift-ring-builder object.builder add z2-127.0.0.1:6020/device 1
sudo swift-ring-builder object.builder add z3-127.0.0.1:6030/device 1
sudo swift-ring-builder object.builder add z4-127.0.0.1:6040/device 1
sudo swift-ring-builder object.builder rebalance
sudo swift-ring-builder container.builder add z1-127.0.0.1:6011/device 1
sudo swift-ring-builder container.builder add z2-127.0.0.1:6021/device 1
sudo swift-ring-builder container.builder add z3-127.0.0.1:6031/device 1
sudo swift-ring-builder container.builder add z4-127.0.0.1:6041/device 1
sudo swift-ring-builder container.builder rebalance
sudo swift-ring-builder account.builder add z1-127.0.0.1:6012/device 1
sudo swift-ring-builder account.builder add z2-127.0.0.1:6022/device 1
sudo swift-ring-builder account.builder add z3-127.0.0.1:6032/device 1
sudo swift-ring-builder account.builder add z4-127.0.0.1:6042/device 1
sudo swift-ring-builder account.builder rebalance

2.2.7.3.5 Starting Swift services

To start swift and the REST API, run the following commands.

sudo swift-init main start
sudo swift-init rest start

2.2.7.3.6 Testing Swift

Swift can be tested using the swift command or the dashboard web interface (Horizon). Firstly, make sure that the ownership for
/etc/swift directory is set to swift.swift.

sudo chown -R swift.swift /etc/swift

Then run the following command and verify if you get the appropriate account information. The number of containers and
objects stored within are displayed as well.

swift -v -V 2.0 -A http://127.0.0.1:5000/v2.0/ -U service:swift -K swift stat
StorageURL: http://127.0.0.1:8080/v1/AUTH_c7970080576646c6959ee35970cf3199
Auth Token: ba9df200a92d4a5088dcd6b7dcc19c0d

Account: AUTH_c7970080576646c6959ee35970cf3199
Containers: 1

Objects: 1
Bytes: 77

Accept-Ranges: bytes
X-Trans-Id: tx11c64e218f984749bc3ec37ea46280ee

2.2.8 Server2

This server runs only nova-compute service.

2.2.8.1 BaseOS

Install 64 bit version of Ubuntu server 12.04

2.2.8.2 Network Configuration

Install bridge-utils:

sudo apt-get install bridge-utils

Edit the /etc/network/interfaces file so as to looks like this:

auto lo
iface lo inet loopback

auto eth0
iface eth0 inet static

address 10.10.10.3
netmask 255.255.255.0
broadcast 10.10.10.255
gateway 10.10.10.1
dns-nameservers 10.10.8.3

auto eth1
iface eth1 inet static

address 192.168.3.2
netmask 255.255.255.0
network 192.168.3.0
broadcast 192.168.3.255

Restart the network.

sudo /etc/init.d/networking restart

OpenStack Compute Starter Guide 35

2.2.8.3 NTP Client

Install NTP package.

sudo apt-get install ntp

Open the file /etc/ntp.conf and add the following line to sync to server1.

server 10.10.10.2

Restart NTP service to make the changes effective

sudo service ntp restart

2.2.8.4 Nova Components (nova-compute alone)

Install the nova-components and dependencies.

sudo apt-get install nova-compute

Edit the /etc/nova/nova.conf file to look like this. This file is identical to the configuration file (/etc/nova/nova.conf) of Server1

--dhcpbridge_flagfile=/etc/nova/nova.conf
--dhcpbridge=/usr/bin/nova-dhcpbridge
--logdir=/var/log/nova
--state_path=/var/lib/nova
--lock_path=/run/lock/nova
--allow_admin_api=true
--use_deprecated_auth=false
--auth_strategy=keystone
--scheduler_driver=nova.scheduler.simple.SimpleScheduler
--s3_host=10.10.10.2
--ec2_host=10.10.10.2
--rabbit_host=10.10.10.2
--cc_host=10.10.10.2
--nova_url=http://10.10.10.2:8774/v1.1/
--routing_source_ip=10.10.10.2
--glance_api_servers=10.10.10.2:9292
--image_service=nova.image.glance.GlanceImageService
--iscsi_ip_prefix=192.168.4
--sql_connection=mysql://novadbadmin:novasecret@10.10.10.2/nova
--ec2_url=http://10.10.10.2:8773/services/Cloud
--keystone_ec2_url=http://10.10.10.2:5000/v2.0/ec2tokens
--api_paste_config=/etc/nova/api-paste.ini
--libvirt_type=kvm
--libvirt_use_virtio_for_bridges=true
--start_guests_on_host_boot=true
--resume_guests_state_on_host_boot=true
vnc specific configuration
--novnc_enabled=true
--novncproxy_base_url=http://10.10.10.2:6080/vnc_auto.html
--vncserver_proxyclient_address=10.10.10.2
--vncserver_listen=10.10.10.2
network specific settings
--network_manager=nova.network.manager.FlatDHCPManager
--public_interface=eth0
--flat_interface=eth1
--flat_network_bridge=br100
--fixed_range=192.168.4.1/27
--floating_range=10.10.10.2/27

--network_size=32
--flat_network_dhcp_start=192.168.4.33
--flat_injected=False
--force_dhcp_release
--iscsi_helper=tgtadm
--connection_type=libvirt
--root_helper=sudo nova-rootwrap
--verbose

Restart nova-compute on Server2.

sudo service restart nova-compute

Check if the second compute node (Server2) is detected by running:

sudo nova-manage service list

If you see an output similar to the following, it means that the set up is ready to be used.

sudo nova-manage service list
Binary Host Zone Status State Updated_At
nova-network server1 nova enabled :-) 2012-04-20 08:58:43
nova-scheduler server1 nova enabled :-) 2012-04-20 08:58:44
nova-volume server1 nova enabled :-) 2012-04-20 08:58:44
nova-compute server1 nova enabled :-) 2012-04-20 08:58:45
nova-cert server1 nova enabled :-) 2012-04-20 08:58:43
nova-compute server2 nova enabled :-) 2012-04-21 10:22:27

2.2.9 Client1

2.2.9.1 BaseOS

Install 64-bit version of Ubuntu 12.04 Desktop

2.2.9.2 Networking Configuration

Edit the /etc/network/interfaces file so as to looks like this:

auto lo
iface lo inet loopback

auto eth0
iface eth0 inet static
address 10.10.10.4
netmask 255.255.255.0
broadcast 10.10.10.255
gateway 10.10.10.1
dns-nameservers 10.10.8.3

2.2.9.3 NTP Client

Install NTP package.

sudo apt-get install -y ntp

Open the file /etc/ntp.conf and add the following line to sync to server1.

server 10.10.10.2

OpenStack Compute Starter Guide 37

Restart NTP service to make the changes effective

sudo service ntp restart

2.2.9.4 Client Tools

As mentioned above, this is a desktop installation of Ubuntu 12.04 to be used for tasks such as bundling of images. It will also
be used for managing the cloud infrastructure using nova, glance and swift commandline tools.

Install the required command line tools with the following command:

sudo apt-get install python-novaclient glance-client swift

Install qemu-kvm

sudo apt-get install qemu-kvm

Export the following environment variables or add them to your ~/.bashrc.

export SERVICE_TOKEN=admin
export OS_TENANT_NAME=admin
export OS_USERNAME=admin
export OS_PASSWORD=admin
export OS_AUTH_URL="http://10.10.10.2:5000/v2.0/"
export SERVICE_ENDPOINT=http://10.10.10.2:35357/v2.0

Execute nova and glance commands to check the connectivity to OpenStack setup.

nova list
+--------------------------------------+------------+--------+----------------------+
| ID | Name | Status | Networks |
+--------------------------------------+------------+--------+----------------------+
| 25ee9230-6bb5-4eca-8808-e6b4e0348362 | myinstance | ACTIVE | private=192.168.4.35 |
| c939cb2c-e662-46e5-bc31-453007442cf9 | myinstance1| ACTIVE | private=192.168.4.36 |
+--------------------------------------+------------+--------+----------------------+

glance index
ID Name Disk Container Size

Format Format
------------------------------------ ------------------------------ ----------------
65b9f8e1-cde8-40e7-93e3-0866becfb9d4 windows qcow2 ovf 7580745728
f147e666-990c-47e2-9caa-a5a21470cc4e debian qcow2 ovf 932904960
f3a8e689-02ed-460f-a587-dc868576228f opensuse qcow2 ovf 1072300032
aa362fd9-7c28-480b-845c-85a5c38ccd86 centoscli qcow2 ovf 1611530240
49f0ec2b-26dd-4644-adcc-2ce047e281c5 ubuntuimage qcow2 ovf 1471807488

2.2.9.5 OpenStack Dashboard

Start a browser and type the ip address of Server1 i.e, http://10.10.10.2. You should see the dashboard login screen. Login with
the credentials username - admin and password - admin to manage the OpenStack setup.

OpenStack Compute Starter Guide 39

Chapter 3

Image Management

3.1 Introduction

There are several pre-built images for OpenStack available from various sources. You can download such images and use them
to get familiar with OpenStack.

For any production deployment, you may like to have the ability to bundle custom images, with a custom set of applications or
configuration. This chapter will guide you through the process of creating Linux images of popular distributions from scratch.
We have also covered an approach to bundling Windows images.

There are some minor differences in the way you would bundle a Linux image, based on the distribution. Ubuntu makes it
very easy by providing cloud-init package, which can be used to take care of the instance configuration at the time of launch.
cloud-init handles importing ssh keys for password-less login, setting host name etc. The instance acquires the instance specific
configuration from Nova-compute by connecting to a meta data interface running on 169.254.169.254.

While creating the image of a distro that does not have cloud-init or an equivalent package, you may need to take care of importing
the keys etc. by running a set of commands at boot time from rc.local.

The process used for creating the Linux images of different distributions is largely the same with a few minor differences, which
is explained below.

In all the cases, the documentation below assumes that you have a working KVM installation to use for creating the images. We
are using the machine called ’client1’ as explained in the chapter on "Installation and Configuration" for this purpose.

The approach explained below will generate disk images that represent a disk without any partitions.

3.2 Creating a Linux Image

The first step would be to create an image on Client1. This will represent the main HDD of the virtual machine, so make sure to
give it as much space as you will need.

kvm-img create -f qcow2 server.img 5G

3.2.1 OS Installation

Download the iso file of the Linux distribution you want to install in the image. For Ubuntu, you can download the iso from
http://releases.ubuntu.com using ’wget’ or with the help of a browser

Boot a KVM instance with the OS installer ISO in the virtual CD-ROM. This will start the installation process. The command
below also sets up a VNC display at port 0

http://releases.ubuntu.com

sudo kvm -m 256 -cdrom ubuntu-12.04-server-amd64.iso -drive file=server.img,if=virtio,index ←↩
=0 -boot d -net nic -net user -nographic ~-vnc :0

Connect to the VM through VNC (use display number :0) and finish the installation.

For Example, where 10.10.10.4 is the IP address of client1:

vncviewer 10.10.10.4 :0

During creation of Linux images , create a single ext4 partition mounted on a swap partition.

After finishing the installation, relaunch the VM by executing the following command.

sudo kvm -m 256 -drive file=server.img,if=virtio,index=0 -boot c -net nic -net user - ←↩
nographic -vnc :0

At this point, you can add all the packages you want to have installed, update the installation, add users and make any configura-
tion changes you want in your image.

3.2.1.1 Ubuntu

sudo apt-get update

sudo apt-get upgrade

sudo apt-get install openssh-server cloud-init

Remove the network persistence rules from /etc/udev/rules.d as their presence will result in the network interface in the instance
coming up as an interface other than eth0.

sudo rm -rf /etc/udev/rules.d/70-persistent-net.rules

3.2.1.2 Fedora

yum update

yum install openssh-server

chkconfig sshd on

Edit the file /etc/sysconfig/network-scripts/ifcfg-eth0 to look like this

DEVICE="eth0"
BOOTPROTO=dhcp
NM_CONTROLLED="yes"
ONBOOT="yes"

Remove the network persistence rules from /etc/udev/rules.d as their presence will result in the network interface in the instance
coming up as an interface other than eth0.

sudo rm -rf /etc/udev/rules.d/70-persistent-net.rules

Shutdown the virtual machine.

Since, Fedora does not ship with cloud-init or an equivalent, you will need to take a few steps to have the instance fetch the meta
data like ssh keys etc.

Edit the /etc/rc.local file and add the following lines before the line "touch /var/lock/subsys/local"

OpenStack Compute Starter Guide 41

depmod -a
modprobe acpiphp
simple attempt to get the user ssh key using the meta-data service
mkdir -p /root/.ssh
echo >> /root/.ssh/authorized_keys
curl -m 10 -s http://169.254.169.254/latest/meta-data/public-keys/0/openssh-key| grep ’ssh- ←↩

rsa’ >> /root/.ssh/authorized_keys
echo "AUTHORIZED_KEYS:"
echo "************************"
cat /root/.ssh/authorized_keys
echo "************************"

3.2.1.3 OpenSUSE

Select ssh server, curl and other packages needed.

Install ssh server.

zypper install openssh

Install curl.

zypper install curl

For ssh key injection into the instance use the following steps:

Create a file /etc/init.d/sshkey and add the following lines

echo >> /root/.ssh/authorized_keys
curl -m 10 -s http://169.254.169.254/latest/meta-data/public-keys/0/openssh-key | grep ’ssh ←↩

-rsa’ >> /root/.ssh/authorized_keys
echo "AUTHORIZED_KEYS:"
echo "************************"
cat /root/.ssh/authorized_keys
echo "************************"

Change the permissions for the file.

chmod 755 /etc/init.d/sshkey

Configure the service to start automatically while booting.

chkconfig sshkey on

Configure the firewall (not iptables) using the following command and allow ssh service

yast2

Also remove the network persistence rules from /etc/udev/rules.d as their presence will result in the network interface in the
instance coming up as an interface other than eth0.

rm -rf /etc/udev/rules.d/70-persistent-net.rules

3.2.1.4 Debian

Select SSH server, Curl and other packages needed.

Do the necessary changes needed for the image. For key injection add the following lines in the file /etc/rc.local.

echo >> /root/.ssh/authorized_keys
curl -m 10 -s http://169.254.169.254/latest/meta-data/public-keys/0/openssh-key | grep ’ssh ←↩

-rsa’ >> /root/.ssh/authorized_keys
echo "AUTHORIZED_KEYS:"
echo "************************"
cat /root/.ssh/authorized_keys
echo "************************"

Also remove the network persistence rules from /etc/udev/rules.d as their presence will result in the network interface in the
instance coming up as an interface other than eth0.

rm -rf /etc/udev/rules.d/70-persistent-net.rules

3.2.1.5 CentOS 6 and RHEL 6

Select SSH server, Curl and other packages needed.

Do the necessary changes needed for the image. For key injection add the following lines in the file /etc/rc.local.

echo >> /root/.ssh/authorized_keys
curl -m 10 -s http://169.254.169.254/latest/meta-data/public-keys/0/openssh-key | grep ’ssh ←↩

-rsa’ >> /root/.ssh/authorized_keys
echo "AUTHORIZED_KEYS:"
echo "************************"
cat /root/.ssh/authorized_keys
echo "************************"

Edit the file /etc/sysconfig/network-scripts/ifcfg-eth0 to look like this

DEVICE="eth0"
BOOTPROTO=dhcp
NM_CONTROLLED="yes"
ONBOOT="yes"

Remove the network persistence rules from /etc/udev/rules.d as their presence will result in the network interface in the instance
coming up as an interface other than eth0.

rm -rf /etc/udev/rules.d/70-persistent-net.rules

3.2.2 Uploading the Linux image

Upload the image

glance add name="<Image name>" is_public=true container_format=ovf disk_format=qcow2 < < ←↩
filename>.img

3.3 Creating a Windows Image

The first step would be to create an image on Client1, this will represent the main HDD of the virtual machine, so make sure to
give it as much space as you will need.

kvm-img create -f qcow2 windowsserver.img 20G

OpenStack Compute Starter Guide 43

3.3.1 OS Installation

OpenStack presents the disk using a virtio interface while launching the instance. Hence the OS needs to have drivers for virtio.
By default, the Windows Server 2008 ISO does not have the drivers for virtio. Download the iso image containing virtio drivers
from the following location http://alt.fedoraproject.org/pub/alt/virtio-win/latest/images/bin and attach it during the installation

Start the installation by executing:

sudo kvm -m 1024 -cdrom windows2008.iso -drive file=windowsserver1.img,if=virtio -boot d - ←↩
drive file=virtio-win-0.1-22.iso,index=3,media=cdrom -device virtio-net-pci -net nic - ←↩
net user -nographic -vnc :5

When the installation prompts you to choose a hard disk device you won’t see any devices available. Click on "Load drivers" at
the bottom left and load the drivers by browsing the secondary CDROM in which the virtio driver disk is loaded

After the installation is over, boot into it once and install any additional applications you need to install and make any configu-
ration changes you need to make. Also ensure that RDP is enabled as that would be the only way you can connect to a running
instance of Windows. Windows firewall needs to be configured to allow incoming ICMP and RDP connections.

3.3.1.1 Uploading the Windows image

Shut-down the VM and upload the image to OpenStack

glance add name="windows" is_public=true container_format=ovf disk_format=qcow2 < ←↩
windowsserver.img

http://alt.fedoraproject.org/pub/alt/virtio-win/latest/images/bin

OpenStack Compute Starter Guide 45

Chapter 4

Instance Management

4.1 Introduction

An instance is a virtual machine provisioned by OpenStack on one of the nova-compute servers. When you launch an instance,
a series of actions is triggered on various components of the OpenStack. During the life cycles of an instance, it moves through
various stages as shown in the diagram below:

The following interfaces can be used for managing instances in nova.

• Nova commands

• Custom applications developed using Nova APIs

• Custom applications developed using EC2 APIs

4.2 Openstack Command Line Tools

Nova has a bunch of command line tools to manage the OpenStack setup. These commands help you manage images, instances,
storage, networking etc. A few commands related to managing the instances are given below.

4.2.1 Creation of Key Pairs

OpenStack services are authenticated and authorized against keystone identity server. Keystone provides a token and a service
catolog containing information about the endpoints of services to which a user is authorized. Each user has a token and service
catalog created for them. This can be downloaded from the OpenStack Dashboard.

You will also need to generate a keypair consisting of private key/public key to be able to launch instances on OpenStack. These
keys are injected into the instances to make password-less SSH access to the instance. This depends on the way the necessary
tools are bundled into the images. Please refer to the chapter on "Image Management" for more details.

Keypairs can also be generated using the following commands.

ssh-keygen
cd .ssh
nova keypair-add --pub_key id_rsa.pub mykey

This creates a new keypair called mykey. The private key id_rsa is saved locally in ~/.ssh which can be used to connect to an
instance launched using mykey as the keypair. You can see the available keypairs with nova keypair-list command.

nova keypair-list
+-------+---+
| Name | Fingerprint |
+-------+---+
| mykey | b0:18:32:fa:4e:d4:3c:1b:c4:6c:dd:cb:53:29:13:82 |
| mykey2 | b0:18:32:fa:4e:d4:3c:1b:c4:6c:dd:cb:53:29:13:82 |
+-------+---+

Also while executing ’ssh-keygen’ you can specify a custom location and custom file names for the keypairs that you want to
create.

To delete an existing keypair:

nova keypair-delete mykey2

4.2.2 Launch and manage instances

There are several commands that help in managing the instances. Here are a few examples:

$ nova boot --flavor 1 --image 9bab7ce7-7523-4d37-831f-c18fbc5cb543 --key_name mykey ←↩
myinstance

+-------------------------------------+--------------------------------------+
| Property | Value |
+-------------------------------------+--------------------------------------+
OS-DCF:diskConfig	MANUAL
OS-EXT-SRV-ATTR:host	None
OS-EXT-SRV-ATTR:hypervisor_hostname	None
OS-EXT-SRV-ATTR:instance_name	instance-00000002
OS-EXT-STS:power_state	0
OS-EXT-STS:task_state	scheduling
OS-EXT-STS:vm_state	building
accessIPv4	

OpenStack Compute Starter Guide 47

accessIPv6	
adminPass	FaUPM6EEBT8F
config_drive	
created	2012-05-02T19:29:59Z
flavor	m1.tiny
hostId	
id	25ee9230-6bb5-4eca-8808-e6b4e0348362
image	ubuntu
key_name	mykey
metadata	{}
name	myinstance
progress	0
status	BUILD
tenant_id	24da687e5d844657996bd5e93d06cb89
updated	2012-05-02T19:29:59Z
user_id	2b64e5ed949145ce92e1fb47224740fe
+-------------------------------------+--------------------------------------+

$ nova list
+--------------------------------------+------------+--------+----------------------+
| ID | Name | Status | Networks |
+--------------------------------------+------------+--------+----------------------+
| 25ee9230-6bb5-4eca-8808-e6b4e0348362 | myinstance | ACTIVE | private=192.168.4.35 |
| c939cb2c-e662-46e5-bc31-453007442cf9 | myinstance1| ACTIVE | private=192.168.4.36 |
+--------------------------------------+------------+--------+----------------------+

$ nova reboot 25ee9230-6bb5-4eca-8808-e6b4e0348362
$ nova list
+--------------------------------------+------------+--------+----------------------+
| ID | Name | Status | Networks |
+--------------------------------------+------------+--------+----------------------+
| 25ee9230-6bb5-4eca-8808-e6b4e0348362 | myinstance | REBOOT | private=192.168.4.35 |
| c939cb2c-e662-46e5-bc31-453007442cf9 | myinstance1| ACTIVE | private=192.168.4.34 |
+--------------------------------------+------------+--------+----------------------+

$ nova delete 25ee9230-6bb5-4eca-8808-e6b4e0348362
$ nova list
+--------------------------------------+------------+--------+----------------------+
| ID | Name | Status | Networks |
+--------------------------------------+------------+--------+----------------------+
| c939cb2c-e662-46e5-bc31-453007442cf9 | myinstance1| ACTIVE | private=192.168.4.34 |
+--------------------------------------+------------+--------+----------------------+

$ nova console-log myinstance

For passwordless ssh access to the instance:

ssh -i <private_key> username@<ip_address>

VM type has implications for harddisk size, amount of RAM and number of CPUs allocated to the instance. Check the VM types
available.

nova flavor-list

New flavours can be created with the command.

sudo nova-manage flavor create <args> [options]

A flavour can be deleted with the command.

sudo nova-manage flavor delete <args> [options]

OpenStack Compute Starter Guide 49

Chapter 5

OpenStack Dashboard (Horizon)

Using the OpenStack Dashboard, one can manage various OpenStack services. It may be used to manage instances and images,
create keypairs, attach volumes to instances, manipulate Swift containers etc. The OpenStack Dashboard is accessible via
http://<ip_address>

5.1 Login

Login to the dashboard with username "admin" and password "admin".

5.2 User Overview

After logging, depending on the access privileges, the user is allowed access to specific projects. The below is an overview page
for a project belonging to the ’admin’ user. One can view and download some basic usage metric reports here.

5.2.1 Instances

The page lists currently running instances belonging to the user ’admin’. From this page, one can terminate, pause, reboot any
running instances, connect to vnc console of the instance etc.

OpenStack Compute Starter Guide 51

5.2.2 Services

The list of services defiend can be viewed on this page.

5.2.3 Flavors

This page lists the currently available flavors that can be used to launch an instance. One can also create custom flavors on this
page.

OpenStack Compute Starter Guide 53

5.2.4 Images

This page lists the available images for the ’admin’ user. One can also delete any images, if they are not required.

5.2.5 Projects

This page lists the available projects (tenants) that have been created. One can also create new projects, assign users to the
projects etc.

OpenStack Compute Starter Guide 55

5.2.6 Users

This page lists the users that have been created. One can also create new users, disable/delete existing users.

5.2.7 Users

This page lists the quota of resources allocated to a user; number of CPUs, amount of RAM, diskspace, max. number of instances
that can be raised etc.

OpenStack Compute Starter Guide 57

5.3 Project Overview

This page shows an overview of the project ’admin’. One can view and download some basic usage metric reports here.

5.3.1 Instances & Volumes

This page lists all the instances belonging to various users of the project, instance properties etc. It also list all the volumes that
have been created and their status; whether available or attached to any running instances. One can also create new volumes and
attach them to the instances on this page.

OpenStack Compute Starter Guide 59

5.3.2 Instances - VNC Console

For a running instance, one can connect to the instance console via VNC.

OpenStack Compute Starter Guide 61

5.3.3 Images & Snapshots

This page lists the custom images that have been uploaded. One can edit the image properties, delete and launch new instances
of the images. This page also lists the snapshots taken from instances and volumes.

5.3.4 Access & Security

On this page, one can allocate and release floating ip addresses, associate and dissociate them to instances. New security groups
can be created and one can modify the rules belonging to each security group.

OpenStack Compute Starter Guide 63

OpenStack Compute Starter Guide 65

5.4 Containers & Objects

On this page, one can create/delete containers, lists objects, upload/download objects and delete objects.

OpenStack Compute Starter Guide 67

Chapter 6

Storage Management

6.1 Nova-volume

Nova-volume provides persistent block storage compatible with Amazon’s Elastic Block Store. The storage on the instances is
non-persistent by nature and hence any data that are generated and stored on the file system on the first disk of the instance are
lost when the instance is terminated. You will need to use persistent volumes provided by nova-volume if you want any data
generated during the life of the instance to persist after the instance is terminated.

Nova commands can be used to manage these volumes.

Here are a few examples:

6.1.1 Interacting with Storage Controller

Make sure that you have sourced novarc before running any of the following commands. The following commands refer to a
zone called ’nova’, which we created in the chapter on "Installation and Configuration". The project is ’proj’ as referred to in the
other chapters.

Create a 10 GB volume

nova volume-create --display_name myvolume 10

List the volumes

nova volume-list

You should see an output like this:

+----+-----------+--------------+------+-------------+--------------------------------------+ ←↩

| ID | Status | Display Name | Size | Volume Type | Attached to ←↩
|

+----+-----------+--------------+------+-------------+--------------------------------------+ ←↩

| 1 | in-use | New Volume | 20 | None | 7db4cb64-7f8f-42e3-9f58-e59c9a31827d ←↩
|

| 4 | available | volume1 | 10 | None | ←↩
|

| 5 | available | myvolume | 10 | None | ←↩
|

| 6 | available | myvolume1 | 10 | None | ←↩
|

+----+-----------+--------------+------+-------------+--------------------------------------+ ←↩

Attach a volume to a running instance

nova volume-attach 857d70e4-35d5-4bf6-97ed-bf4e9a4dcf5a <volume-id> /dev/vdb

A volume can only be attached to one instance at a time. When nova volume-list shows the status of a volume as ’available’, it
means it is not attached to any instance and ready to be used. If you run nova volume-list, you can see that the status changes
from "available" to "in-use" if it is attached to an instance successfully.

When a volume is attached to an instance, it shows up as an additional disk on the instance. You can login to the instance and
mount the disk, format it and use it.

Detach a volume from an instance.

nova volume-detach 857d70e4-35d5-4bf6-97ed-bf4e9a4dcf5a <volume-id>

The data on the volume persists even after the volume is detached from an instance or after the instance is terminated. You can
view the data after attaching the volume to another instance.

Even though you have indicated /dev/vdb as the device on the instance, the actual device name created by the OS running inside
the instance may differ. You can find the name of the device by looking at the device nodes in /dev or by watching the syslog
when the volume is being attached.

6.1.2 Swift

Swift is a reliable, distributed, massively scalable blob storage service that can be used for storage and archival of objects. Swift
provides a REST interface. You can use Swift commandline which is an interface for the OpenStack object store service.

To get the information about swift account, container and objects.

$ swift -v -V 2.0 -A http://127.0.0.1:5000/v2.0/ -U service:swiftuser -K swiftpasswd stat
Account: AUTH_43b42dae-dc0b-4a4b-ac55-97de614d6e6e
Containers: 1
Objects: 1
Bytes: 1124
Accept-Ranges: bytes
X-Trans-Id: txb21186a9eef64ed295a1e95896a0fc72

To get information about a particular container (mycontainer):

$ swift -v -V 2.0 -A http://127.0.0.1:5000/v2.0/ -U service:swiftuser -K swiftpasswd stat ←↩
mycontainer

To get information about an object (abc123.txt) within container (mycontainer):

$ swift -v -V 2.0 -A http://127.0.0.1:5000/v2.0/ -U service:swiftuser -K swiftpasswd stat ←↩
mycontainer abc123.txt

To list available containers in account:

$ swift -v -V 2.0 -A http://127.0.0.1:5000/v2.0/ -U service:swiftuser -K swiftpasswd list

To list all containers whose names begin with ’my’:

$ swift -v -V 2.0 -A http://127.0.0.1:5000/v2.0/ -U service:swiftuser -K swiftpasswd -- ←↩
prefix=my list

To list all objects within container ’mycontainer’:

$ swift -v -V 2.0 -A http://127.0.0.1:5000/v2.0/ -U service:swiftuser -K swiftpasswd -- ←↩
prefix=my list mycontainer

To upload files ’abc.txt’ and ’xyz.txt’ to ’mycontainer’:

OpenStack Compute Starter Guide 69

$ swift -v -V 2.0 -A http://127.0.0.1:5000/v2.0/ -U service:swiftuser -K swiftpasswd upload ←↩
mycontainer /path/abc.txt /path/xyz.txt

To download all the objects from all containers:

$ swift -v -V 2.0 -A http://127.0.0.1:5000/v2.0/ -U service:swiftuser -K swiftpasswd --all ←↩
download

To download all objects from container ’mycontainer’:

$ swift -v -V 2.0 -A http://127.0.0.1:5000/v2.0/ -U service:swiftuser -K swiftpasswd ←↩
download mycontainer

To download ’abc.txt’ and ’xyz.txt’ from container ’mycontainer’:

$ swift -v -V 2.0 -A http://127.0.0.1:5000/v2.0/ -U service:swiftuser -K swiftpasswd ←↩
download mycontainer abc.txt xyz.txt

To delete all objects in all containers:

$ swift -v -V 2.0 -A http://127.0.0.1:5000/v2.0/ -U service:swiftuser -K swiftpasswd --all ←↩
delete

To delete all objects in container ’mycontainer’:

$ swift -v -V 2.0 -A http://127.0.0.1:5000/v2.0/ -U service:swiftuser -K swiftpasswd delete ←↩
mycontainer

To delete files ’abc.txt’ and ’xyz.txt’ from container ’mycontainer’:

$ swift -v -V 2.0 -A http://127.0.0.1:5000/v2.0/ -U service:swiftuser -K swiftpasswd delete ←↩
mycontainer abc.txt xyz.txt

OpenStack Compute Starter Guide 71

Chapter 7

Network Management

7.1 Introduction

In OpenStack, the networking is managed by a component called "nova-network". This interacts with nova-compute to ensure
that the instances have the right kind of networking setup for them to communicate among themselves as well as with the outside
world. OpenStack instances can have 2 types of IP addresses associated to it: Private IP address (fixed) and Public IP address
(floating). Private IP addresses are typically used for communication between instances (internal) and public IP addresses are
used for communication of instances with the outside world (external or Internet). The so-called public IP addresses need not
necessarily be IP addresses route-able on the Internet ; they can even be addresses on a corporate LAN.

The network configurations inside the instances are done with private IP addresses in view. The association between the private
IP and the public IP addresses and necessary routing are handled by nova-network and the instances need not be aware of them.

nova-network provides 3 different network management options. Currently you can only choose one of these 3 options for your
network management.

• Flat Network

• Flat DHCP Network

• VLAN Network

VLAN Network is the most feature rich and is the ideal choice for a production deployment, while the other modes can be used
while getting familiar with OpenStack and when you do not have VLAN Enabled switches to connect different components of
the OpenStack infrastructure.

The network type is chosen by using one of the following configuration options in nova.conf file. If no network manager is
specified explicitly, the default network manager, VLANManager is used.

--network_manager = nova.network.manager.FlatManager
--network_manager = nova.network.manager.FlatDHCPManager
--network_manager = nova.network.manager.VlanManager

In each of these cases, run the following commands to set up private and public IP addresses for use by the instances:

sudo nova-manage network create private --fixed_range_v4=192.168.4.3/27 -- ←↩
num_networks=1 --bridge=br100 --bridge_interface=eth1 --network_size=32

sudo nova-manage floating create --ip_range=10.10.10.224/27

The public IP which you are going to associate with an instance needs to be allocated first by using the command:

nova floating-ip-create
+----------------+-------------+----------+------+
| Ip | Instance Id | Fixed Ip | Pool |

+----------------+-------------+----------+------+
| 10.10.10.225 | None | None | nova |
+----------------+-------------+----------+------+

You can then associate a public IP to a running instance by using the command:

nova add-floating-ip <instance-name> 10.10.2.225

OpenStack Compute Starter Guide 73

Chapter 8

Security

8.1 Security Overview

OpenStack provides ingress filtering for the instances based on the concept of security groups. OpenStack accomplishes ingress
filtering by creating suitable iptables rules. A Security Group is a named set of rules that get applied to the incoming packets
for the instances. You can specify a security group while launching an instance. Each security group can have multiple rules
associated with it. Each rule specifies the source IP/network, protocol type, destination ports etc. Any packet matching these
parameters specified in a rule is allowed in. Rest of the packets are blocked.

A security group that does not have any rules associated with it causes blocking of all incoming traffic. The mechanism only
provides ingress filtering and does not provide any egress filtering. As a result all outbound traffic is allowed. If you need to
implement egress filtering, you will need to implement that inside the instance (during bundling process) using a firewall.

The OpenStack Dashboard lets you manage security groups and also let you specify a security group while launching an instance.
You can also use commands like ’nova secgroup-add-rule’ etc. for this purpose.

Here are a few nova commands to manage security groups.

Create a security group named "myservers".

nova secgroup-create <name> <description>
nova secgroup-create myservers my-default-server-group

Add a rule to the security group "myservers" allowing icmp and tcp traffic from 192.168.1.1.

nova secgroup-add-rule myservers tcp 22 22 192.168.1.1/0
nova secgroup-add-rule myservers icmp -1 -1 192.168.1.1/0

For a Windows instance, add a rule to accept incoming RDP connections

nova secgroup-add-rule myservers tcp 3389 3389 192.168.1.1/0

Rules can be viewed with the command.

$ nova secgroup-list-rules myservers
+-------------+-----------+---------+--------------+--------------+
| IP Protocol | From Port | To Port | IP Range | Source Group |
+-------------+-----------+---------+--------------+--------------+
icmp	-1	-1	192.168.1.1/0	myservers
tcp	22	22	192.168.1.1/0	myservers
+-------------+-----------+---------+--------------+--------------+

Remove the rule for ssh traffic from the source ip 192.168.1.1 from the security group "myservers"

nova secgroup-delete-rule myservers ssh 22 22 192.168.1.1

Delete the security group "myservers"

nova secgroup-delete myservers

Launch an instance associated with the security group "myservers".

nova boot --flavor 1 --image 9bab7ce7-7523-4d37-831f-c18fbc5cb543 --key_name mykey ←↩
myinstance --security_groups myservers

When you do not specify a security group, the instance gets associated with an inbuilt security group called "default". The rules
for this security group can also be modified using nova secgroup-add-rule , nova secgroup-delete-rule commands.

OpenStack Compute Starter Guide 75

Chapter 9

OpenStack Commands

9.1 Nova Commands

nova is the command line interface for OpenStack Compute API.

Usage: nova command [options] [args]

Commands:
help Display help about this program or one of its subcommands.
actions Retrieve server actions.
backup-schedule Show or edit the backup schedule for a server.
backup-schedule-delete Delete the backup schedule for a server.
boot Boot a new server.
delete Immediately shut down and delete a server.
diagnostics Retrieve server diagnostics.
flavor-list Print a list of available ’flavors’ (sizes of servers).
image-create Create a new image by taking a snapshot of a running server.
image-delete Delete an image.
image-list Print a list of available images to boot from.
ip-share Share an IP address from the given IP group onto a server.
ip-unshare Stop sharing an given address with a server.
ipgroup-create Create a new IP group.
ipgroup-delete Delete an IP group.
ipgroup-list Show IP groups.
ipgroup-show Show details about a particular IP group.
list List active servers.
pause Pause a server.
reboot Reboot a server.
rebuild Shutdown, re-image, and re-boot a server.
rename Rename a server.
rescue Rescue a server.
resize Resize a server.
resize-confirm Confirm a previous resize.
resize-revert Revert a previous resize (and return to the previous VM).
resume Resume a server.
root-password Change the root password for a server.
show Show details about the given server.
suspend Suspend a server.
unpause Unpause a server.
unrescue Unrescue a server.
zone Show or edit a child zone.
zone-add Add a new child zone.
zone-delete Delete a zone.
zone-info Get this zones name and capabilities.

zone-list List the children of a zone.

9.2 Glance Commands

Glance is the command line interface for the OpenStack Imaging service.

Usage: glance command [options] [args]

Commands:
help command Output help for one of the commands below
add Adds a new image to Glance
update Updates an image’s metadata in Glance
delete Deletes an image from Glance
index Return brief information about images in Glance
details Return detailed information about images in

Glance
show Show detailed information about an image in

Glance
clear Removes all images and metadata from Glance

Member Commands:
image-members List members an image is shared with
member-images List images shared with a member
member-add Grants a member access to an image
member-delete Revokes a member’s access to an image
members-replace Replaces all membership for an image

9.3 Swift Commands

Swift is the command line interface for OpenStack Object Store service.

Usage: swift command [options] [args]

Commands:
stat Displays information for the account, container, or object depending

on the args given (if any).
list Lists the containers for the account or the objects for a container.
upload Uploads to the given container the files and directories specified by

the remaining args.
post Updates meta information for the account, container, or object

depending on the args given.
download Downloads everything in the account (with --all), or everything in

a container, or a list of objects depending on the args given.
delete Deletes everything in the account (with --all), or everything in

a container, or a list of objects depending on the args given.

9.4 Keystone Commands

Keystone is the command line interface to the OpenStack Identity service.

Usage: keystone command [options] [args]

Commands:
catalog List service catalog, possibly filtered by service.

OpenStack Compute Starter Guide 77

ec2-credentials-create Create EC2-compatibile credentials for user per tenant
ec2-credentials-delete Delete EC2-compatibile credentials
ec2-credentials-get Display EC2-compatibile credentials
ec2-credentials-list List EC2-compatibile credentials for a user
endpoint-create Create a new endpoint associated with a service
endpoint-delete Delete a service endpoint
endpoint-get Find endpoint filtered by a specific attribute or service type
endpoint-list List configured service endpoints
role-create Create new role
role-delete Delete role
role-get Display role details
role-list List all roles, or only those granted to a user.
service-create Add service to Service Catalog
service-delete Delete service from Service Catalog
service-get Display service from Service Catalog
service-list List all services in Service Catalog
tenant-create Create new tenant
tenant-delete Delete tenant
tenant-get Display tenant details
tenant-list List all tenants
tenant-update Update tenant name, description, enabled status
token-get Display the current user token
user-create Create new user
user-delete Delete user
user-get Display user details.
user-list List users
user-password-update Update user password
user-role-add Add role to user
user-role-remove Remove role from user
user-update Update user’s name, email, and enabled status
discover Discover Keystone servers and show authentication protocols and
help Display help about this program or one of its subcommands.

